You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
when i try to run train.py precisaly the test method, it gives me the error below:
BERT-type: uncased_L-24_H-1024_A-16
Batch_size = 32
BERT parameters:
learning rate: 1e-05
Fine-tune BERT: False
vocab size: 30522
hidden_size: 1024
num_hidden_layer: 24
num_attention_heads: 16
hidden_act: gelu
intermediate_size: 4096
hidden_dropout_prob: 0.1
attention_probs_dropout_prob: 0.1
max_position_embeddings: 512
type_vocab_size: 2
initializer_range: 0.02
Load pre-trained parameters.
Seq-to-SQL: the number of final BERT layers to be used: 2
Seq-to-SQL: the size of hidden dimension = 100
Seq-to-SQL: LSTM encoding layer size = 2
Seq-to-SQL: dropout rate = 0.3
Seq-to-SQL: learning rate = 0.001
Traceback (most recent call last):
File "train.py", line 709, in
path_model_bert=path_model_bert, path_model=path_model)
File "train.py", line 187, in get_models
model_bert.load_state_dict(res['model_bert'])
File "/home/ysfmell/.local/lib/python3.6/site-packages/torch/nn/modules/module.py", line 830, in load_state_dict
self.class.name, "\n\t".join(error_msgs)))
RuntimeError: Error(s) in loading state_dict for BertModel:
Missing key(s) in state_dict: "encoder.layer.12.attention.self.query.weight", "encoder.layer.12.attention.self.query.bias", "encoder.layer.12.attention.self.key.weight", "encoder.layer.12.attention.self.key.bias", "encoder.layer.12.attention.self.value.weight", "encoder.layer.12.attention.self.value.bias", "encoder.layer.12.attention.output.dense.weight", "encoder.layer.12.attention.output.dense.bias", "encoder.layer.12.attention.output.LayerNorm.gamma", "encoder.layer.12.attention.output.LayerNorm.beta", "encoder.layer.12.intermediate.dense.weight", "encoder.layer.12.intermediate.dense.bias", "encoder.layer.12.output.dense.weight", "encoder.layer.12.output.dense.bias", "encoder.layer.12.output.LayerNorm.gamma", "encoder.layer.12.output.LayerNorm.beta", "encoder.layer.13.attention.self.query.weight", "encoder.layer.13.attention.self.query.bias", "encoder.layer.13.attention.self.key.weight", "encoder.layer.13.attention.self.key.bias", "encoder.layer.13.attention.self.value.weight", "encoder.layer.13.attention.self.value.bias", "encoder.layer.13.attention.output.dense.weight", "encoder.layer.13.attention.output.dense.bias", "encoder.layer.13.attention.output.LayerNorm.gamma", "encoder.layer.13.attention.output.LayerNorm.beta", "encoder.layer.13.intermediate.dense.weight", "encoder.layer.13.intermediate.dense.bias", "encoder.layer.13.output.dense.weight", "encoder.layer.13.output.dense.bias", "encoder.layer.13.output.LayerNorm.gamma", "encoder.layer.13.output.LayerNorm.beta", "encoder.layer.14.attention.self.query.weight", "encoder.layer.14.attention.self.query.bias", "encoder.layer.14.attention.self.key.weight", "encoder.layer.14.attention.self.key.bias", "encoder.layer.14.attention.self.value.weight", "encoder.layer.14.attention.self.value.bias", "encoder.layer.14.attention.output.dense.weight", "encoder.layer.14.attention.output.dense.bias", "encoder.layer.14.attention.output.LayerNorm.gamma", "encoder.layer.14.attention.output.LayerNorm.beta", "encoder.layer.14.intermediate.dense.weight", "encoder.layer.14.intermediate.dense.bias", "encoder.layer.14.output.dense.weight", "encoder.layer.14.output.dense.bias", "encoder.layer.14.output.LayerNorm.gamma", "encoder.layer.14.output.LayerNorm.beta", "encoder.layer.15.attention.self.query.weight", "encoder.layer.15.attention.self.query.bias", "encoder.layer.15.attention.self.key.weight", "encoder.layer.15.attention.self.key.bias", "encoder.layer.15.attention.self.value.weight", "encoder.layer.15.attention.self.value.bias", "encoder.layer.15.attention.output.dense.weight", "encoder.layer.15.attention.output.dense.bias", "encoder.layer.15.attention.output.LayerNorm.gamma", "encoder.layer.15.attention.output.LayerNorm.beta", "encoder.layer.15.intermediate.dense.weight", "encoder.layer.15.intermediate.dense.bias", "encoder.layer.15.output.dense.weight", "encoder.layer.15.output.dense.bias", "encoder.layer.15.output.LayerNorm.gamma", "encoder.layer.15.output.LayerNorm.beta", "encoder.layer.16.attention.self.query.weight", "encoder.layer.16.attention.self.query.bias", "encoder.layer.16.attention.self.key.weight", "encoder.layer.16.attention.self.key.bias", "encoder.layer.16.attention.self.value.weight", "encoder.layer.16.attention.self.value.bias", "encoder.layer.16.attention.output.dense.weight", "encoder.layer.16.attention.output.dense.bias", "encoder.layer.16.attention.output.LayerNorm.gamma", "encoder.layer.16.attention.output.LayerNorm.beta", "encoder.layer.16.intermediate.dense.weight", "encoder.layer.16.intermediate.dense.bias", "encoder.layer.16.output.dense.weight", "encoder.layer.16.output.dense.bias", "encoder.layer.16.output.LayerNorm.gamma", "encoder.layer.16.output.LayerNorm.beta", "encoder.layer.17.attention.self.query.weight", "encoder.layer.17.attention.self.query.bias", "encoder.layer.17.attention.self.key.weight", "encoder.layer.17.attention.self.key.bias", "encoder.layer.17.attention.self.value.weight", "encoder.layer.17.attention.self.value.bias", "encoder.layer.17.attention.output.dense.weight", "encoder.layer.17.attention.output.dense.bias", "encoder.layer.17.attention.output.LayerNorm.gamma", "encoder.layer.17.attention.output.LayerNorm.beta", "encoder.layer.17.intermediate.dense.weight", "encoder.layer.17.intermediate.dense.bias", "encoder.layer.17.output.dense.weight", "encoder.layer.17.output.dense.bias", "encoder.layer.17.output.LayerNorm.gamma", "encoder.layer.17.output.LayerNorm.beta", "encoder.layer.18.attention.self.query.weight", "encoder.layer.18.attention.self.query.bias", "encoder.layer.18.attention.self.key.weight", "encoder.layer.18.attention.self.key.bias", "encoder.layer.18.attention.self.value.weight", "encoder.layer.18.attention.self.value.bias", "encoder.layer.18.attention.output.dense.weight", "encoder.layer.18.attention.output.dense.bias", "encoder.layer.18.attention.output.LayerNorm.gamma", "encoder.layer.18.attention.output.LayerNorm.beta", "encoder.layer.18.intermediate.dense.weight", "encoder.layer.18.intermediate.dense.bias", "encoder.layer.18.output.dense.weight", "encoder.layer.18.output.dense.bias", "encoder.layer.18.output.LayerNorm.gamma", "encoder.layer.18.output.LayerNorm.beta", "encoder.layer.19.attention.self.query.weight", "encoder.layer.19.attention.self.query.bias", "encoder.layer.19.attention.self.key.weight", "encoder.layer.19.attention.self.key.bias", "encoder.layer.19.attention.self.value.weight", "encoder.layer.19.attention.self.value.bias", "encoder.layer.19.attention.output.dense.weight", "encoder.layer.19.attention.output.dense.bias", "encoder.layer.19.attention.output.LayerNorm.gamma", "encoder.layer.19.attention.output.LayerNorm.beta", "encoder.layer.19.intermediate.dense.weight", "encoder.layer.19.intermediate.dense.bias", "encoder.layer.19.output.dense.weight", "encoder.layer.19.output.dense.bias", "encoder.layer.19.output.LayerNorm.gamma", "encoder.layer.19.output.LayerNorm.beta", "encoder.layer.20.attention.self.query.weight", "encoder.layer.20.attention.self.query.bias", "encoder.layer.20.attention.self.key.weight", "encoder.layer.20.attention.self.key.bias", "encoder.layer.20.attention.self.value.weight", "encoder.layer.20.attention.self.value.bias", "encoder.layer.20.attention.output.dense.weight", "encoder.layer.20.attention.output.dense.bias", "encoder.layer.20.attention.output.LayerNorm.gamma", "encoder.layer.20.attention.output.LayerNorm.beta", "encoder.layer.20.intermediate.dense.weight", "encoder.layer.20.intermediate.dense.bias", "encoder.layer.20.output.dense.weight", "encoder.layer.20.output.dense.bias", "encoder.layer.20.output.LayerNorm.gamma", "encoder.layer.20.output.LayerNorm.beta", "encoder.layer.21.attention.self.query.weight", "encoder.layer.21.attention.self.query.bias", "encoder.layer.21.attention.self.key.weight", "encoder.layer.21.attention.self.key.bias", "encoder.layer.21.attention.self.value.weight", "encoder.layer.21.attention.self.value.bias", "encoder.layer.21.attention.output.dense.weight", "encoder.layer.21.attention.output.dense.bias", "encoder.layer.21.attention.output.LayerNorm.gamma", "encoder.layer.21.attention.output.LayerNorm.beta", "encoder.layer.21.intermediate.dense.weight", "encoder.layer.21.intermediate.dense.bias", "encoder.layer.21.output.dense.weight", "encoder.layer.21.output.dense.bias", "encoder.layer.21.output.LayerNorm.gamma", "encoder.layer.21.output.LayerNorm.beta", "encoder.layer.22.attention.self.query.weight", "encoder.layer.22.attention.self.query.bias", "encoder.layer.22.attention.self.key.weight", "encoder.layer.22.attention.self.key.bias", "encoder.layer.22.attention.self.value.weight", "encoder.layer.22.attention.self.value.bias", "encoder.layer.22.attention.output.dense.weight", "encoder.layer.22.attention.output.dense.bias", "encoder.layer.22.attention.output.LayerNorm.gamma", "encoder.layer.22.attention.output.LayerNorm.beta", "encoder.layer.22.intermediate.dense.weight", "encoder.layer.22.intermediate.dense.bias", "encoder.layer.22.output.dense.weight", "encoder.layer.22.output.dense.bias", "encoder.layer.22.output.LayerNorm.gamma", "encoder.layer.22.output.LayerNorm.beta", "encoder.layer.23.attention.self.query.weight", "encoder.layer.23.attention.self.query.bias", "encoder.layer.23.attention.self.key.weight", "encoder.layer.23.attention.self.key.bias", "encoder.layer.23.attention.self.value.weight", "encoder.layer.23.attention.self.value.bias", "encoder.layer.23.attention.output.dense.weight", "encoder.layer.23.attention.output.dense.bias", "encoder.layer.23.attention.output.LayerNorm.gamma", "encoder.layer.23.attention.output.LayerNorm.beta", "encoder.layer.23.intermediate.dense.weight", "encoder.layer.23.intermediate.dense.bias", "encoder.layer.23.output.dense.weight", "encoder.layer.23.output.dense.bias", "encoder.layer.23.output.LayerNorm.gamma", "encoder.layer.23.output.LayerNorm.beta".
size mismatch for embeddings.word_embeddings.weight: copying a param with shape torch.Size([30522, 768]) from checkpoint, the shape in current model is torch.Size([30522, 1024]).
size mismatch for embeddings.position_embeddings.weight: copying a param with shape torch.Size([512, 768]) from checkpoint, the shape in current model is torch.Size([512, 1024]).
size mismatch for embeddings.token_type_embeddings.weight: copying a param with shape torch.Size([2, 768]) from checkpoint, the shape in current model is torch.Size([2, 1024]).
size mismatch for embeddings.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for embeddings.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.0.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.0.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.0.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.0.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.0.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.0.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.0.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.1.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.1.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.1.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.1.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.1.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.1.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.1.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.2.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.2.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.2.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.2.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.2.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.2.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.2.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.3.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.3.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.3.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.3.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.3.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.3.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.3.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.4.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.4.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.4.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.4.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.4.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.4.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.4.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.5.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.5.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.5.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.5.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.5.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.5.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.5.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.6.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.6.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.6.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.6.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.6.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.6.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.6.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.7.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.7.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.7.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.7.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.7.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.7.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.7.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.8.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.8.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.8.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.8.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.8.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.8.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.8.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.9.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.9.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.9.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.9.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.9.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.9.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.9.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.10.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.10.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.10.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.10.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.10.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.10.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.10.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.11.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.11.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.11.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.11.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.11.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.11.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.11.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for pooler.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for pooler.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
The text was updated successfully, but these errors were encountered:
Hi,
Can you help please ??
when i try to run train.py precisaly the test method, it gives me the error below:
BERT-type: uncased_L-24_H-1024_A-16
Batch_size = 32
BERT parameters:
learning rate: 1e-05
Fine-tune BERT: False
vocab size: 30522
hidden_size: 1024
num_hidden_layer: 24
num_attention_heads: 16
hidden_act: gelu
intermediate_size: 4096
hidden_dropout_prob: 0.1
attention_probs_dropout_prob: 0.1
max_position_embeddings: 512
type_vocab_size: 2
initializer_range: 0.02
Load pre-trained parameters.
Seq-to-SQL: the number of final BERT layers to be used: 2
Seq-to-SQL: the size of hidden dimension = 100
Seq-to-SQL: LSTM encoding layer size = 2
Seq-to-SQL: dropout rate = 0.3
Seq-to-SQL: learning rate = 0.001
Traceback (most recent call last):
File "train.py", line 709, in
path_model_bert=path_model_bert, path_model=path_model)
File "train.py", line 187, in get_models
model_bert.load_state_dict(res['model_bert'])
File "/home/ysfmell/.local/lib/python3.6/site-packages/torch/nn/modules/module.py", line 830, in load_state_dict
self.class.name, "\n\t".join(error_msgs)))
RuntimeError: Error(s) in loading state_dict for BertModel:
Missing key(s) in state_dict: "encoder.layer.12.attention.self.query.weight", "encoder.layer.12.attention.self.query.bias", "encoder.layer.12.attention.self.key.weight", "encoder.layer.12.attention.self.key.bias", "encoder.layer.12.attention.self.value.weight", "encoder.layer.12.attention.self.value.bias", "encoder.layer.12.attention.output.dense.weight", "encoder.layer.12.attention.output.dense.bias", "encoder.layer.12.attention.output.LayerNorm.gamma", "encoder.layer.12.attention.output.LayerNorm.beta", "encoder.layer.12.intermediate.dense.weight", "encoder.layer.12.intermediate.dense.bias", "encoder.layer.12.output.dense.weight", "encoder.layer.12.output.dense.bias", "encoder.layer.12.output.LayerNorm.gamma", "encoder.layer.12.output.LayerNorm.beta", "encoder.layer.13.attention.self.query.weight", "encoder.layer.13.attention.self.query.bias", "encoder.layer.13.attention.self.key.weight", "encoder.layer.13.attention.self.key.bias", "encoder.layer.13.attention.self.value.weight", "encoder.layer.13.attention.self.value.bias", "encoder.layer.13.attention.output.dense.weight", "encoder.layer.13.attention.output.dense.bias", "encoder.layer.13.attention.output.LayerNorm.gamma", "encoder.layer.13.attention.output.LayerNorm.beta", "encoder.layer.13.intermediate.dense.weight", "encoder.layer.13.intermediate.dense.bias", "encoder.layer.13.output.dense.weight", "encoder.layer.13.output.dense.bias", "encoder.layer.13.output.LayerNorm.gamma", "encoder.layer.13.output.LayerNorm.beta", "encoder.layer.14.attention.self.query.weight", "encoder.layer.14.attention.self.query.bias", "encoder.layer.14.attention.self.key.weight", "encoder.layer.14.attention.self.key.bias", "encoder.layer.14.attention.self.value.weight", "encoder.layer.14.attention.self.value.bias", "encoder.layer.14.attention.output.dense.weight", "encoder.layer.14.attention.output.dense.bias", "encoder.layer.14.attention.output.LayerNorm.gamma", "encoder.layer.14.attention.output.LayerNorm.beta", "encoder.layer.14.intermediate.dense.weight", "encoder.layer.14.intermediate.dense.bias", "encoder.layer.14.output.dense.weight", "encoder.layer.14.output.dense.bias", "encoder.layer.14.output.LayerNorm.gamma", "encoder.layer.14.output.LayerNorm.beta", "encoder.layer.15.attention.self.query.weight", "encoder.layer.15.attention.self.query.bias", "encoder.layer.15.attention.self.key.weight", "encoder.layer.15.attention.self.key.bias", "encoder.layer.15.attention.self.value.weight", "encoder.layer.15.attention.self.value.bias", "encoder.layer.15.attention.output.dense.weight", "encoder.layer.15.attention.output.dense.bias", "encoder.layer.15.attention.output.LayerNorm.gamma", "encoder.layer.15.attention.output.LayerNorm.beta", "encoder.layer.15.intermediate.dense.weight", "encoder.layer.15.intermediate.dense.bias", "encoder.layer.15.output.dense.weight", "encoder.layer.15.output.dense.bias", "encoder.layer.15.output.LayerNorm.gamma", "encoder.layer.15.output.LayerNorm.beta", "encoder.layer.16.attention.self.query.weight", "encoder.layer.16.attention.self.query.bias", "encoder.layer.16.attention.self.key.weight", "encoder.layer.16.attention.self.key.bias", "encoder.layer.16.attention.self.value.weight", "encoder.layer.16.attention.self.value.bias", "encoder.layer.16.attention.output.dense.weight", "encoder.layer.16.attention.output.dense.bias", "encoder.layer.16.attention.output.LayerNorm.gamma", "encoder.layer.16.attention.output.LayerNorm.beta", "encoder.layer.16.intermediate.dense.weight", "encoder.layer.16.intermediate.dense.bias", "encoder.layer.16.output.dense.weight", "encoder.layer.16.output.dense.bias", "encoder.layer.16.output.LayerNorm.gamma", "encoder.layer.16.output.LayerNorm.beta", "encoder.layer.17.attention.self.query.weight", "encoder.layer.17.attention.self.query.bias", "encoder.layer.17.attention.self.key.weight", "encoder.layer.17.attention.self.key.bias", "encoder.layer.17.attention.self.value.weight", "encoder.layer.17.attention.self.value.bias", "encoder.layer.17.attention.output.dense.weight", "encoder.layer.17.attention.output.dense.bias", "encoder.layer.17.attention.output.LayerNorm.gamma", "encoder.layer.17.attention.output.LayerNorm.beta", "encoder.layer.17.intermediate.dense.weight", "encoder.layer.17.intermediate.dense.bias", "encoder.layer.17.output.dense.weight", "encoder.layer.17.output.dense.bias", "encoder.layer.17.output.LayerNorm.gamma", "encoder.layer.17.output.LayerNorm.beta", "encoder.layer.18.attention.self.query.weight", "encoder.layer.18.attention.self.query.bias", "encoder.layer.18.attention.self.key.weight", "encoder.layer.18.attention.self.key.bias", "encoder.layer.18.attention.self.value.weight", "encoder.layer.18.attention.self.value.bias", "encoder.layer.18.attention.output.dense.weight", "encoder.layer.18.attention.output.dense.bias", "encoder.layer.18.attention.output.LayerNorm.gamma", "encoder.layer.18.attention.output.LayerNorm.beta", "encoder.layer.18.intermediate.dense.weight", "encoder.layer.18.intermediate.dense.bias", "encoder.layer.18.output.dense.weight", "encoder.layer.18.output.dense.bias", "encoder.layer.18.output.LayerNorm.gamma", "encoder.layer.18.output.LayerNorm.beta", "encoder.layer.19.attention.self.query.weight", "encoder.layer.19.attention.self.query.bias", "encoder.layer.19.attention.self.key.weight", "encoder.layer.19.attention.self.key.bias", "encoder.layer.19.attention.self.value.weight", "encoder.layer.19.attention.self.value.bias", "encoder.layer.19.attention.output.dense.weight", "encoder.layer.19.attention.output.dense.bias", "encoder.layer.19.attention.output.LayerNorm.gamma", "encoder.layer.19.attention.output.LayerNorm.beta", "encoder.layer.19.intermediate.dense.weight", "encoder.layer.19.intermediate.dense.bias", "encoder.layer.19.output.dense.weight", "encoder.layer.19.output.dense.bias", "encoder.layer.19.output.LayerNorm.gamma", "encoder.layer.19.output.LayerNorm.beta", "encoder.layer.20.attention.self.query.weight", "encoder.layer.20.attention.self.query.bias", "encoder.layer.20.attention.self.key.weight", "encoder.layer.20.attention.self.key.bias", "encoder.layer.20.attention.self.value.weight", "encoder.layer.20.attention.self.value.bias", "encoder.layer.20.attention.output.dense.weight", "encoder.layer.20.attention.output.dense.bias", "encoder.layer.20.attention.output.LayerNorm.gamma", "encoder.layer.20.attention.output.LayerNorm.beta", "encoder.layer.20.intermediate.dense.weight", "encoder.layer.20.intermediate.dense.bias", "encoder.layer.20.output.dense.weight", "encoder.layer.20.output.dense.bias", "encoder.layer.20.output.LayerNorm.gamma", "encoder.layer.20.output.LayerNorm.beta", "encoder.layer.21.attention.self.query.weight", "encoder.layer.21.attention.self.query.bias", "encoder.layer.21.attention.self.key.weight", "encoder.layer.21.attention.self.key.bias", "encoder.layer.21.attention.self.value.weight", "encoder.layer.21.attention.self.value.bias", "encoder.layer.21.attention.output.dense.weight", "encoder.layer.21.attention.output.dense.bias", "encoder.layer.21.attention.output.LayerNorm.gamma", "encoder.layer.21.attention.output.LayerNorm.beta", "encoder.layer.21.intermediate.dense.weight", "encoder.layer.21.intermediate.dense.bias", "encoder.layer.21.output.dense.weight", "encoder.layer.21.output.dense.bias", "encoder.layer.21.output.LayerNorm.gamma", "encoder.layer.21.output.LayerNorm.beta", "encoder.layer.22.attention.self.query.weight", "encoder.layer.22.attention.self.query.bias", "encoder.layer.22.attention.self.key.weight", "encoder.layer.22.attention.self.key.bias", "encoder.layer.22.attention.self.value.weight", "encoder.layer.22.attention.self.value.bias", "encoder.layer.22.attention.output.dense.weight", "encoder.layer.22.attention.output.dense.bias", "encoder.layer.22.attention.output.LayerNorm.gamma", "encoder.layer.22.attention.output.LayerNorm.beta", "encoder.layer.22.intermediate.dense.weight", "encoder.layer.22.intermediate.dense.bias", "encoder.layer.22.output.dense.weight", "encoder.layer.22.output.dense.bias", "encoder.layer.22.output.LayerNorm.gamma", "encoder.layer.22.output.LayerNorm.beta", "encoder.layer.23.attention.self.query.weight", "encoder.layer.23.attention.self.query.bias", "encoder.layer.23.attention.self.key.weight", "encoder.layer.23.attention.self.key.bias", "encoder.layer.23.attention.self.value.weight", "encoder.layer.23.attention.self.value.bias", "encoder.layer.23.attention.output.dense.weight", "encoder.layer.23.attention.output.dense.bias", "encoder.layer.23.attention.output.LayerNorm.gamma", "encoder.layer.23.attention.output.LayerNorm.beta", "encoder.layer.23.intermediate.dense.weight", "encoder.layer.23.intermediate.dense.bias", "encoder.layer.23.output.dense.weight", "encoder.layer.23.output.dense.bias", "encoder.layer.23.output.LayerNorm.gamma", "encoder.layer.23.output.LayerNorm.beta".
size mismatch for embeddings.word_embeddings.weight: copying a param with shape torch.Size([30522, 768]) from checkpoint, the shape in current model is torch.Size([30522, 1024]).
size mismatch for embeddings.position_embeddings.weight: copying a param with shape torch.Size([512, 768]) from checkpoint, the shape in current model is torch.Size([512, 1024]).
size mismatch for embeddings.token_type_embeddings.weight: copying a param with shape torch.Size([2, 768]) from checkpoint, the shape in current model is torch.Size([2, 1024]).
size mismatch for embeddings.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for embeddings.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.0.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.0.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.0.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.0.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.0.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.0.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.0.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.0.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.1.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.1.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.1.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.1.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.1.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.1.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.1.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.1.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.2.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.2.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.2.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.2.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.2.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.2.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.2.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.2.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.3.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.3.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.3.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.3.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.3.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.3.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.3.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.3.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.4.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.4.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.4.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.4.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.4.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.4.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.4.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.4.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.5.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.5.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.5.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.5.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.5.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.5.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.5.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.5.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.6.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.6.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.6.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.6.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.6.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.6.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.6.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.6.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.7.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.7.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.7.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.7.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.7.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.7.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.7.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.7.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.8.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.8.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.8.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.8.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.8.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.8.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.8.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.8.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.9.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.9.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.9.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.9.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.9.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.9.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.9.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.9.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.10.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.10.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.10.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.10.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.10.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.10.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.10.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.10.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.attention.self.query.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.11.attention.self.query.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.attention.self.key.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.11.attention.self.key.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.attention.self.value.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.11.attention.self.value.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.attention.output.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for encoder.layer.11.attention.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.attention.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.attention.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.intermediate.dense.weight: copying a param with shape torch.Size([3072, 768]) from checkpoint, the shape in current model is torch.Size([4096, 1024]).
size mismatch for encoder.layer.11.intermediate.dense.bias: copying a param with shape torch.Size([3072]) from checkpoint, the shape in current model is torch.Size([4096]).
size mismatch for encoder.layer.11.output.dense.weight: copying a param with shape torch.Size([768, 3072]) from checkpoint, the shape in current model is torch.Size([1024, 4096]).
size mismatch for encoder.layer.11.output.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.output.LayerNorm.gamma: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for encoder.layer.11.output.LayerNorm.beta: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
size mismatch for pooler.dense.weight: copying a param with shape torch.Size([768, 768]) from checkpoint, the shape in current model is torch.Size([1024, 1024]).
size mismatch for pooler.dense.bias: copying a param with shape torch.Size([768]) from checkpoint, the shape in current model is torch.Size([1024]).
The text was updated successfully, but these errors were encountered: