Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

llff dataset - gardenshperes #13

Closed
prakashknaikade opened this issue Nov 23, 2023 · 1 comment
Closed

llff dataset - gardenshperes #13

prakashknaikade opened this issue Nov 23, 2023 · 1 comment

Comments

@prakashknaikade
Copy link

prakashknaikade commented Nov 23, 2023

I am trying to run refnerf - gardenshperes real dataset (llff type),
https://dorverbin.github.io/refnerf/,
using following config:
scenedir: gardenspheres
dataset_name: llff
downsample_train: 4
downsample_test: 4
ndc_ray: false
near_far: [1, 6]
#stack_norms: false
aabb_scale: 2

But it is not working,

Tue 21 Nov 2023 04:40:12 PM CET
Warp 0.10.1 initialized:
   CUDA Toolkit: 11.5, Driver: 12.0
   Devices:
     "cpu"    | CPU
     "cuda:0" | NVIDIA A40 (sm_86)
   Kernel cache: /home/pnaikade/.cache/warp/0.10.1
[2023-11-21 16:41:31,520][HYDRA] Launching 1 jobs locally
[2023-11-21 16:41:31,520][HYDRA] 	#0 : expname=gardenspheres_test model=microfacet_tensorf2 dataset=toycar vis_every=5000 datadir=/HPS/ColorNeRF/work/ref_nerf_dataset
ic| expname: 'toycar_gardenspheres_test'
ic| self.N_voxel_list: [4283103, 7622116, 12358440, 18736316, 27000000]
ic| self.use_predicted_normals: False
    self.align_pred_norms: True
    self.orient_world_normals: True
2023-11-21 16:41:44.815 | INFO     | __main__:reconstruction:322 - initial ortho_reg_weight
2023-11-21 16:41:44.816 | INFO     | __main__:reconstruction:325 - initial L1_reg_weight
2023-11-21 16:41:44.816 | INFO     | __main__:reconstruction:328 - initial TV_weight density: 0.0 appearance: 0.0
2023-11-21 16:41:45.113 | INFO     | __main__:reconstruction:338 - TensorNeRF(
  (rf): TensorVMSplit(
    (density_rf): TensoRF(
      (app_plane): ParameterList(
          (0): Parameter containing: [torch.float32 of size 1x16x128x128 (cuda:0)]
          (1): Parameter containing: [torch.float32 of size 1x16x128x128 (cuda:0)]
          (2): Parameter containing: [torch.float32 of size 1x16x128x128 (cuda:0)]
      )
      (app_line): ParameterList(
          (0): Parameter containing: [torch.float32 of size 1x16x128x1 (cuda:0)]
          (1): Parameter containing: [torch.float32 of size 1x16x128x1 (cuda:0)]
          (2): Parameter containing: [torch.float32 of size 1x16x128x1 (cuda:0)]
      )
    )
    (app_rf): TensoRF(
      (app_plane): ParameterList(
          (0): Parameter containing: [torch.float32 of size 1x24x128x128 (cuda:0)]
          (1): Parameter containing: [torch.float32 of size 1x24x128x128 (cuda:0)]
          (2): Parameter containing: [torch.float32 of size 1x24x128x128 (cuda:0)]
      )
      (app_line): ParameterList(
          (0): Parameter containing: [torch.float32 of size 1x24x128x1 (cuda:0)]
          (1): Parameter containing: [torch.float32 of size 1x24x128x1 (cuda:0)]
          (2): Parameter containing: [torch.float32 of size 1x24x128x1 (cuda:0)]
      )
    )
    (basis_mat): Linear(in_features=72, out_features=24, bias=False)
    (dbasis_mat): Linear(in_features=48, out_features=1, bias=False)
  )
  (sampler): AlphaGridSampler()
  (model): Microfacet(
    (diffuse_module): RandHydraMLPDiffuse(
      (diffuse_mlp): Sequential(
        (0): Linear(in_features=24, out_features=3, bias=True)
      )
      (tint_mlp): Sequential(
        (0): Linear(in_features=24, out_features=3, bias=True)
      )
      (f0_mlp): Sequential(
        (0): Linear(in_features=24, out_features=3, bias=True)
      )
      (roughness_mlp): Sequential(
        (0): Linear(in_features=24, out_features=2, bias=True)
      )
    )
    (brdf): MLPBRDF(
      (h_encoder): ListISH()
      (d_encoder): ListISH()
      (mlp): Sequential(
        (0): Linear(in_features=66, out_features=64, bias=True)
        (1): ReLU(inplace=True)
        (2): Linear(in_features=64, out_features=64, bias=True)
        (3): ReLU(inplace=True)
        (4): Linear(in_features=64, out_features=4, bias=True)
      )
    )
    (brdf_sampler): GGXSampler()
  )
  (bg_module): IntegralEquirect()
  (tonemap): SRGBTonemap()
)
ic| white_bg: False
ic| self.nSamples: 625, self.stepsize: tensor(0.0157, device='cuda:0')
ic| self.nSamples: 625, self.stepsize: tensor(0.0157, device='cuda:0')
ic| self.diffuse_bias: 2.326634076573745
    mean_brightness: tensor(0.5488, device='cuda:0')
    v: 0.9110595349675754
ic| bg_brightness: tensor(0.5488, device='cuda:0')
    target_val: 0.9110595349675754
    self.bias: 2.2158484777592573
grid size tensor([128, 128, 128])
aabb tensor([-3.0000, -3.3400, -2.0000,  3.0000,  3.3400,  2.0000], device='cuda:0')
sampling step size:  tensor(0.0157)
sampling number:  625

  0%|          | 0/30000 [00:00<?, ?it/s]ic| ori_decay: 1
ic| normal_decay: 1
ic| gt_bg_path: None
/HPS/ColorNeRF/work/opt/anaconda3/envs/nmf/lib/python3.10/site-packages/numpy/core/fromnumeric.py:3504: RuntimeWarning: Mean of empty slice.
  return _methods._mean(a, axis=axis, dtype=dtype,
/HPS/ColorNeRF/work/opt/anaconda3/envs/nmf/lib/python3.10/site-packages/numpy/core/_methods.py:129: RuntimeWarning: invalid value encountered in scalar divide
  ret = ret.dtype.type(ret / rcount)

1.0e+00:   6%|| 1907/30000 [02:27<35:07, 13.33it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1909/30000 [02:27<35:10, 13.31it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1909/30000 [02:27<35:10, 13.31it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1909/30000 [02:27<35:10, 13.31it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1911/30000 [02:27<35:09, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1911/30000 [02:28<35:09, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1911/30000 [02:28<35:09, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1913/30000 [02:28<35:08, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1913/30000 [02:28<35:08, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1913/30000 [02:28<35:08, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1915/30000 [02:28<35:08, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1915/30000 [02:28<35:08, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1915/30000 [02:28<35:08, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1917/30000 [02:28<35:16, 13.27it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1917/30000 [02:28<35:16, 13.27it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1917/30000 [02:28<35:16, 13.27it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1919/30000 [02:28<35:18, 13.25it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1919/30000 [02:28<35:18, 13.25it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1919/30000 [02:28<35:18, 13.25it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1921/30000 [02:28<35:15, 13.27it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1921/30000 [02:28<35:15, 13.27it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1921/30000 [02:28<35:15, 13.27it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1923/30000 [02:28<35:12, 13.29it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1923/30000 [02:28<35:12, 13.29it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1923/30000 [02:29<35:12, 13.29it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1925/30000 [02:29<35:11, 13.30it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1931/30000 [02:29<35:10, 13.30it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1931/30000 [02:29<35:10, 13.30it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1931/30000 [02:29<35:10, 13.30it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1933/30000 [02:29<35:06, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1933/30000 [02:29<35:06, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1939/30000 [02:30<35:16, 13.26it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1941/30000 [02:30<36:16, 12.89it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1941/30000 [02:30<36:16, 12.89it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1941/30000 [02:30<36:16, 12.89it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1943/30000 [02:30<37:41, 12.41it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1943/30000 [02:30<37:41, 12.41it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1943/30000 [02:30<37:41, 12.41it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1945/30000 [02:30<38:57, 12.00it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1945/30000 [02:30<38:57, 12.00it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1945/30000 [02:30<38:57, 12.00it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1947/30000 [02:30<38:21, 12.19it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1947/30000 [02:30<38:21, 12.19it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1947/30000 [02:30<38:21, 12.19it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1949/30000 [02:30<37:30, 12.47it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1949/30000 [02:30<37:30, 12.47it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   6%|| 1949/30000 [02:31<37:30, 12.47it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1951/30000 [02:31<36:53, 12.67it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1951/30000 [02:31<36:53, 12.67it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1951/30000 [02:31<36:53, 12.67it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1953/30000 [02:31<36:31, 12.80it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1953/30000 [02:31<36:31, 12.80it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1953/30000 [02:31<36:31, 12.80it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1955/30000 [02:31<36:10, 12.92it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1955/30000 [02:31<36:10, 12.92it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1955/30000 [02:31<36:10, 12.92it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1957/30000 [02:31<35:48, 13.05it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1957/30000 [02:31<35:48, 13.05it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1957/30000 [02:31<35:48, 13.05it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1995/30000 [02:34<35:02, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1997/30000 [02:34<35:03, 13.31it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1997/30000 [02:34<35:03, 13.31it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1997/30000 [02:34<35:03, 13.31it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1999/30000 [02:34<35:02, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1999/30000 [02:34<35:02, 13.32it/s]
psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 1999/30000 [02:34<35:02, 13.32it/s]/HPS/ColorNeRF/work/opt/anaconda3/envs/nmf/lib/python3.10/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3526.)
  return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]

psnr = nan test_psnr = 0.00 loss = 0.00000 envmap = 0.00000 diffuse = 0.00000 brdf = 0.00000 nrays = [100, 1000] mipbias = 1.0e+00:   7%|| 2000/30000 [02:35<36:17, 12.86it/s]
Error executing job with overrides: ['expname=gardenspheres_test', 'model=microfacet_tensorf2', 'dataset=toycar', 'vis_every=5000', 'datadir=/HPS/ColorNeRF/work/ref_nerf_dataset']
Traceback (most recent call last):
  File "/HPS/ColorNeRF/work/nmf/train.py", line 915, in train
    reconstruction(cfg)
  File "/HPS/ColorNeRF/work/nmf/train.py", line 805, in reconstruction
    if tensorf.check_schedule(iteration, 1):
  File "/HPS/ColorNeRF/work/nmf/modules/tensor_nerf.py", line 180, in check_schedule
    require_reassignment |= self.sampler.check_schedule(iter, batch_mul, self.rf)
  File "/HPS/ColorNeRF/work/nmf/samplers/alphagrid.py", line 93, in check_schedule
    self.update(rf)
  File "/HPS/ColorNeRF/work/opt/anaconda3/envs/nmf/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "/HPS/ColorNeRF/work/nmf/samplers/alphagrid.py", line 105, in update
    new_aabb = self.updateAlphaMask(rf, rf.grid_size)
  File "/HPS/ColorNeRF/work/opt/anaconda3/envs/nmf/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "/HPS/ColorNeRF/work/nmf/samplers/alphagrid.py", line 267, in updateAlphaMask
    xyz_min = valid_xyz.amin(0)
IndexError: amin(): Expected reduction dim 0 to have non-zero size.

Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.
Tue 21 Nov 2023 04:44:44 PM CET
@half-potato
Copy link
Owner

I would tune the starting density to ensure that the rays hit something within the scene.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants