-
Notifications
You must be signed in to change notification settings - Fork 16
/
prior.py
231 lines (184 loc) · 8.54 KB
/
prior.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems and the Max Planck Institute for Biological
# Cybernetics. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import sys
import os
import time
import pickle
import numpy as np
import torch
import torch.nn as nn
DEFAULT_DTYPE = torch.float32
def create_prior(prior_type, **kwargs):
if prior_type == 'gmm':
prior = MaxMixturePrior(**kwargs)
elif prior_type == 'l2':
return L2Prior(**kwargs)
elif prior_type == 'angle':
return SMPLifyAnglePrior(**kwargs)
elif prior_type == 'none' or prior_type is None:
# Don't use any pose prior
def no_prior(*args, **kwargs):
return 0.0
prior = no_prior
else:
raise ValueError('Prior {}'.format(prior_type) + ' is not implemented')
return prior
class SMPLifyAnglePrior(nn.Module):
def __init__(self, dtype=torch.float32, **kwargs):
super(SMPLifyAnglePrior, self).__init__()
# Indices for the roration angle of
# 55: left elbow, 90deg bend at -np.pi/2
# 58: right elbow, 90deg bend at np.pi/2
# 12: left knee, 90deg bend at np.pi/2
# 15: right knee, 90deg bend at np.pi/2
angle_prior_idxs = np.array([55, 58, 12, 15], dtype=np.int64)
angle_prior_idxs = torch.tensor(angle_prior_idxs, dtype=torch.long)
self.register_buffer('angle_prior_idxs', angle_prior_idxs)
angle_prior_signs = np.array([1, -1, -1, -1],
dtype=np.float32 if dtype == torch.float32
else np.float64)
angle_prior_signs = torch.tensor(angle_prior_signs,
dtype=dtype)
self.register_buffer('angle_prior_signs', angle_prior_signs)
def forward(self, pose, with_global_pose=False):
''' Returns the angle prior loss for the given pose
Args:
pose: (Bx[23 + 1] * 3) torch tensor with the axis-angle
representation of the rotations of the joints of the SMPL model.
Kwargs:
with_global_pose: Whether the pose vector also contains the global
orientation of the SMPL model. If not then the indices must be
corrected.
Returns:
A sze (B) tensor containing the angle prior loss for each element
in the batch.
'''
angle_prior_idxs = self.angle_prior_idxs - (not with_global_pose) * 3
return torch.exp(pose[:, angle_prior_idxs] *
self.angle_prior_signs).pow(2)
class L2Prior(nn.Module):
def __init__(self, dtype=DEFAULT_DTYPE, reduction='sum', **kwargs):
super(L2Prior, self).__init__()
def forward(self, module_input, *args):
return torch.sum(module_input.pow(2))
class MaxMixturePrior(nn.Module):
def __init__(self, prior_folder='prior',
num_gaussians=6, dtype=DEFAULT_DTYPE, epsilon=1e-16,
use_merged=True,
**kwargs):
super(MaxMixturePrior, self).__init__()
if dtype == DEFAULT_DTYPE:
np_dtype = np.float32
elif dtype == torch.float64:
np_dtype = np.float64
else:
print('Unknown float type {}, exiting!'.format(dtype))
sys.exit(-1)
self.num_gaussians = num_gaussians
self.epsilon = epsilon
self.use_merged = use_merged
gmm_fn = 'gmm_{:02d}.pkl'.format(num_gaussians)
full_gmm_fn = os.path.join(prior_folder, gmm_fn)
if not os.path.exists(full_gmm_fn):
print('The path to the mixture prior "{}"'.format(full_gmm_fn) +
' does not exist, exiting!')
sys.exit(-1)
with open(full_gmm_fn, 'rb') as f:
gmm = pickle.load(f, encoding='latin1')
if type(gmm) == dict:
means = gmm['means'].astype(np_dtype)
covs = gmm['covars'].astype(np_dtype)
weights = gmm['weights'].astype(np_dtype)
elif 'sklearn.mixture.gmm.GMM' in str(type(gmm)):
means = gmm.means_.astype(np_dtype)
covs = gmm.covars_.astype(np_dtype)
weights = gmm.weights_.astype(np_dtype)
else:
print('Unknown type for the prior: {}, exiting!'.format(type(gmm)))
sys.exit(-1)
self.register_buffer('means', torch.tensor(means, dtype=dtype))
self.register_buffer('covs', torch.tensor(covs, dtype=dtype))
precisions = [np.linalg.inv(cov) for cov in covs]
precisions = np.stack(precisions).astype(np_dtype)
self.register_buffer('precisions',
torch.tensor(precisions, dtype=dtype))
# The constant term:
sqrdets = np.array([(np.sqrt(np.linalg.det(c)))
for c in gmm['covars']])
const = (2 * np.pi)**(69 / 2.)
nll_weights = np.asarray(gmm['weights'] / (const *
(sqrdets / sqrdets.min())))
nll_weights = torch.tensor(nll_weights, dtype=dtype).unsqueeze(dim=0)
self.register_buffer('nll_weights', nll_weights)
weights = torch.tensor(gmm['weights'], dtype=dtype).unsqueeze(dim=0)
self.register_buffer('weights', weights)
self.register_buffer('pi_term',
torch.log(torch.tensor(2 * np.pi, dtype=dtype)))
cov_dets = [np.log(np.linalg.det(cov.astype(np_dtype)) + epsilon)
for cov in covs]
self.register_buffer('cov_dets',
torch.tensor(cov_dets, dtype=dtype))
# The dimensionality of the random variable
self.random_var_dim = self.means.shape[1]
def get_mean(self):
''' Returns the mean of the mixture '''
mean_pose = torch.matmul(self.weights, self.means)
return mean_pose
def merged_log_likelihood(self, pose, betas):
diff_from_mean = pose.unsqueeze(dim=1) - self.means
prec_diff_prod = torch.einsum('mij,bmj->bmi',
[self.precisions, diff_from_mean])
diff_prec_quadratic = (prec_diff_prod * diff_from_mean).sum(dim=-1)
curr_loglikelihood = 0.5 * diff_prec_quadratic - \
torch.log(self.nll_weights)
# curr_loglikelihood = 0.5 * (self.cov_dets.unsqueeze(dim=0) +
# self.random_var_dim * self.pi_term +
# diff_prec_quadratic
# ) - torch.log(self.weights)
min_likelihood, _ = torch.min(curr_loglikelihood, dim=1)
return min_likelihood
def log_likelihood(self, pose, betas, *args, **kwargs):
''' Create graph operation for negative log-likelihood calculation
'''
likelihoods = []
for idx in range(self.num_gaussians):
mean = self.means[idx]
prec = self.precisions[idx]
cov = self.covs[idx]
diff_from_mean = pose - mean
curr_loglikelihood = torch.einsum('bj,ji->bi',
[diff_from_mean, prec])
curr_loglikelihood = torch.einsum('bi,bi->b',
[curr_loglikelihood,
diff_from_mean])
cov_term = torch.log(torch.det(cov) + self.epsilon)
curr_loglikelihood += 0.5 * (cov_term +
self.random_var_dim *
self.pi_term)
likelihoods.append(curr_loglikelihood)
log_likelihoods = torch.stack(likelihoods, dim=1)
min_idx = torch.argmin(log_likelihoods, dim=1)
weight_component = self.nll_weights[:, min_idx]
weight_component = -torch.log(weight_component)
return weight_component + log_likelihoods[:, min_idx]
def forward(self, pose, betas):
if self.use_merged:
return self.merged_log_likelihood(pose, betas)
else:
return self.log_likelihood(pose, betas)