-
Notifications
You must be signed in to change notification settings - Fork 20
/
card_detector.py
132 lines (115 loc) · 5.76 KB
/
card_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import cv2
import numpy as np
import math
from screeninfo import get_monitors
"""
This is the first attempt of identifying MTG cards using only classical computer vision technique.
Most of the processes are similar to the process used in opencv_dnn.py, but it instead tries to use
Hough transformation to identify straight edges of the card.
However, there were difficulties trying to associate multiple edges into a rectangle, as some of them
either didn't show up or was too short to intersect.
There were also no method to dynamically adjust various threshold, even finding all the edges were
very conditional.
"""
def detect_a_card(img, thresh_val=80, blur_radius=None, dilate_radius=None, min_hyst=80, max_hyst=200,
min_line_length=None, max_line_gap=None, debug=False):
dim_img = (len(img[0]), len(img)) # (width, height)
# Intermediate variables
# Default values
if blur_radius is None:
blur_radius = math.floor(min(dim_img) / 100 + 0.5) // 2 * 2 + 1 # Rounded to the nearest odd
if dilate_radius is None:
dilate_radius = math.floor(min(dim_img) / 67 + 0.5)
if min_line_length is None:
min_line_length = min(dim_img) / 10
if max_line_gap is None:
max_line_gap = min(dim_img) / 10
thresh_radius = math.floor(min(dim_img) / 20 + 0.5) // 2 * 2 + 1 # Rounded to the nearest odd
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Median blur better removes background textures than Gaussian blur
img_blur = cv2.medianBlur(img_gray, blur_radius)
# Truncate the bright area while detecting the border
img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY_INV, thresh_radius, 20)
#_, img_thresh = cv2.threshold(img_blur, thresh_val, 255, cv2.THRESH_TRUNC)
# Dilate the image to emphasize thick borders around the card
kernel_dilate = np.ones((dilate_radius, dilate_radius), np.uint8)
#img_dilate = cv2.dilate(img_thresh, kernel_dilate, iterations=1)
img_dilate = cv2.erode(img_thresh, kernel_dilate, iterations=1)
img_contour = img_dilate.copy()
_, contours, _ = cv2.findContours(img_contour, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR)
img_contour = cv2.drawContours(img_contour, contours, -1, (128, 128, 128), 1)
card_found = contours is not None
print(len(contours))
print([len(contour) for contour in contours])
# find the biggest area
c = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(c)
# draw the book contour (in green)
img_contour = cv2.drawContours(img_contour, [c], -1, (0, 255, 0), 1)
# Canny edge - low minimum hysteresis to detect glowed area,
# and high maximum hysteresis to compensate for high false positives.
img_canny = cv2.Canny(img_dilate, min_hyst, max_hyst)
#img_canny = img_dilate
# Apply Hough transformation to detect the edges
detected_lines = cv2.HoughLinesP(img_dilate, 1, np.pi / 180, threshold=60,
minLineLength=min_line_length,
maxLineGap=max_line_gap)
card_found = detected_lines is not None
print(len(detected_lines))
if card_found:
if debug:
img_hough = cv2.cvtColor(img_dilate.copy(), cv2.COLOR_GRAY2BGR)
for line in detected_lines:
x1, y1, x2, y2 = line[0]
cv2.line(img_hough, (x1, y1), (x2, y2), (0, 0, 255), 1)
elif not debug:
print('Hough couldn\'t find any lines')
# Debug: display intermediate results from various steps
if debug:
img_blank = np.zeros((len(img), len(img[0]), 3), np.uint8)
img_thresh = cv2.cvtColor(img_thresh, cv2.COLOR_GRAY2BGR)
img_dilate = cv2.cvtColor(img_dilate, cv2.COLOR_GRAY2BGR)
#img_canny = cv2.cvtColor(img_canny, cv2.COLOR_GRAY2BGR)
if not card_found:
img_hough = img_blank
# Append all images together
img_row_1 = np.concatenate((img, img_thresh), axis=1)
img_row_2 = np.concatenate((img_contour, img_hough), axis=1)
img_result = np.concatenate((img_row_1, img_row_2), axis=0)
# Resize the final image to fit into the main monitor's resolution
screen_size = get_monitors()[0]
resize_ratio = max(len(img_result[0]) / screen_size.width, len(img_result) / screen_size.height, 1)
img_result = cv2.resize(img_result, (int(len(img_result[0]) // resize_ratio),
int(len(img_result) // resize_ratio)))
cv2.imshow('Result', img_result)
cv2.waitKey(0)
# TODO: output meaningful data
return card_found
def main():
img_test = cv2.imread('data/li38_handOfCards.jpg')
card_found = detect_a_card(img_test,
#dilate_radius=5,
#thresh_val=100,
#min_hyst=40,
#max_hyst=160,
#min_line_length=50,
#max_line_gap=100,
debug=True)
if card_found:
return
return
for dilate_radius in range(1, 6):
for min_hyst in range(50, 91, 10):
for max_hyst in range(180, 119, -20):
print('dilate_radius=%d, min_hyst=%d, max_hyst=%d: ' % (dilate_radius, min_hyst, max_hyst),
end='', flush=True)
card_found = detect_a_card(img_test, dilate_radius=dilate_radius,
min_hyst=min_hyst, max_hyst=max_hyst, debug=True)
if card_found:
print('Card found')
else:
print('Not found')
if __name__ == '__main__':
main()