Skip to content



Folders and files

Last commit message
Last commit date

Latest commit


Repository files navigation

Benchmarking nearest neighbors

Build Status

Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far there has not been a lot of empirical attempts at comparing approaches in an objective way.

This project contains some tools to benchmark various implementations of approximate nearest neighbor (ANN) search for different metrics. We have pregenerated datasets (in HDF5) formats and we also have Docker containers for each algorithm. There's a test suite that makes sure every algorithm works.


Data sets

We have a number of precomputed data sets for this. All data sets are pre-split into train/test and come with ground truth data in the form of the top 100 neighbors. We store them in a HDF5 format:

Dataset Dimensions Train size Test size Neighbors Distance Download
DEEP1B 96 9,990,000 10,000 100 Angular HDF5 (3.6GB)
Fashion-MNIST 784 60,000 10,000 100 Euclidean HDF5 (217MB)
GIST 960 1,000,000 1,000 100 Euclidean HDF5 (3.6GB)
GloVe 25 1,183,514 10,000 100 Angular HDF5 (121MB)
GloVe 50 1,183,514 10,000 100 Angular HDF5 (235MB)
GloVe 100 1,183,514 10,000 100 Angular HDF5 (463MB)
GloVe 200 1,183,514 10,000 100 Angular HDF5 (918MB)
Kosarak 27983 74,962 500 100 Jaccard HDF5 (2.0GB)
MNIST 784 60,000 10,000 100 Euclidean HDF5 (217MB)
NYTimes 256 290,000 10,000 100 Angular HDF5 (301MB)
SIFT 128 1,000,000 10,000 100 Euclidean HDF5 (501MB) 65 292,385 50,000 100 Angular HDF5 (135MB)


These are all as of 2020-07-12, running all benchmarks on a c5.4xlarge machine on AWS with --parallelism set to 3:














The only prerequisite is Python (tested with 3.6) and Docker.

  1. Clone the repo.
  2. Run pip install -r requirements.txt.
  3. Run python to build all the libraries inside Docker containers (this can take a while, like 10-30 minutes).


  1. Run python (this can take an extremely long time, potentially days)
  2. Run python or python to plot results.

You can customize the algorithms and datasets if you want to:

  • Check that algos.yaml contains the parameter settings that you want to test
  • To run experiments on SIFT, invoke python --dataset glove-100-angular. See python --help for more information on possible settings. Note that experiments can take a long time.
  • To process the results, either use python --dataset glove-100-angular or python An example call: python --plottype recall/time --latex --scatter --outputdir website/.

Including your algorithm

  1. Add your algorithm into ann_benchmarks/algorithms by providing a small Python wrapper.
  2. Add a Dockerfile in install/ for it
  3. Add it to algos.yaml
  4. Add it to .travis.yml


  • Everyone is welcome to submit pull requests with tweaks and changes to how each library is being used.
  • In particular: if you are the author of any of these libraries, and you think the benchmark can be improved, consider making the improvement and submitting a pull request.
  • This is meant to be an ongoing project and represent the current state.
  • Make everything easy to replicate, including installing and preparing the datasets.
  • Try many different values of parameters for each library and ignore the points that are not on the precision-performance frontier.
  • High-dimensional datasets with approximately 100-1000 dimensions. This is challenging but also realistic. Not more than 1000 dimensions because those problems should probably be solved by doing dimensionality reduction separately.
  • Single queries are used by default. ANN-Benchmarks enforces that only one CPU is saturated during experimentation, i.e., no multi-threading. A batch mode is available that provides all queries to the implementations at once. Add the flag --batch to and to enable batch mode.
  • Avoid extremely costly index building (more than several hours).
  • Focus on datasets that fit in RAM. Out of core ANN could be the topic of a later comparison.
  • We mainly support CPU-based ANN algorithms. GPU support exists for FAISS, but it has to be compiled with GPU support locally and experiments must be run using the flags --local --batch.
  • Do proper train/test set of index data and query points.
  • Note that we consider that set similarity datasets are sparse and thus we pass a sorted array of integers to algorithms to represent the set of each user.


Built by Erik Bernhardsson with significant contributions from Martin Aumüller and Alexander Faithfull.

Related Publication

The following publication details design principles behind the benchmarking framework:


Benchmarks of approximate nearest neighbor libraries in Python







No releases published


No packages published


  • HTML 78.2%
  • Python 21.7%
  • Other 0.1%