forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gp.go
130 lines (118 loc) · 2.87 KB
/
gp.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// Copyright 2017 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
// +build !leak
package gp
import (
"sync"
"sync/atomic"
"time"
)
// Pool is a struct to represent goroutine pool.
type Pool struct {
head goroutine
tail *goroutine
count int
idleTimeout time.Duration
sync.Mutex
}
// goroutine is actually a background goroutine, with a channel binded for communication.
type goroutine struct {
ch chan func()
next *goroutine
status int32
}
const (
statusIdle int32 = 0
statusInUse int32 = 1
statusDead int32 = 2
)
// New returns a new *Pool object.
func New(idleTimeout time.Duration) *Pool {
pool := &Pool{
idleTimeout: idleTimeout,
}
pool.tail = &pool.head
return pool
}
// Go works like go func(), but goroutines are pooled for reusing.
// This strategy can avoid runtime.morestack, because pooled goroutine is already enlarged.
func (pool *Pool) Go(f func()) {
for {
g := pool.get()
if atomic.CompareAndSwapInt32(&g.status, statusIdle, statusInUse) {
g.ch <- f
return
}
// Status already changed from statusIdle => statusDead, drop it, find next one.
}
}
func (pool *Pool) get() *goroutine {
pool.Lock()
head := &pool.head
if head.next == nil {
pool.Unlock()
return pool.alloc()
}
ret := head.next
head.next = ret.next
if ret == pool.tail {
pool.tail = head
}
pool.count--
pool.Unlock()
ret.next = nil
return ret
}
func (pool *Pool) alloc() *goroutine {
g := &goroutine{
ch: make(chan func()),
}
go g.workLoop(pool)
return g
}
func (g *goroutine) put(pool *Pool) {
g.status = statusIdle
pool.Lock()
pool.tail.next = g
pool.tail = g
pool.count++
pool.Unlock()
}
func (g *goroutine) workLoop(pool *Pool) {
timer := time.NewTimer(pool.idleTimeout)
for {
select {
case <-timer.C:
// Check to avoid a corner case that the goroutine is take out from pool,
// and get this signal at the same time.
succ := atomic.CompareAndSwapInt32(&g.status, statusIdle, statusDead)
if succ {
return
}
case work := <-g.ch:
work()
// Put g back to the pool.
// This is the normal usage for a resource pool:
//
// obj := pool.get()
// use(obj)
// pool.put(obj)
//
// But when goroutine is used as a resource, we can't pool.put() immediately,
// because the resource(goroutine) maybe still in use.
// So, put back resource is done here, when the goroutine finish its work.
g.put(pool)
}
timer.Reset(pool.idleTimeout)
}
}