-
Notifications
You must be signed in to change notification settings - Fork 0
/
stroke.go
466 lines (427 loc) · 14.1 KB
/
stroke.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package raster
// Two points are considered practically equal if the square of the distance
// between them is less than one quarter (i.e. 16384 / 65536 in Fix64).
const epsilon = 16384
// A Capper signifies how to begin or end a stroked path.
type Capper interface {
// Cap adds a cap to p given a pivot point and the normal vector of a
// terminal segment. The normal's length is half of the stroke width.
Cap(p Adder, halfWidth Fix32, pivot, n1 Point)
}
// The CapperFunc type adapts an ordinary function to be a Capper.
type CapperFunc func(Adder, Fix32, Point, Point)
func (f CapperFunc) Cap(p Adder, halfWidth Fix32, pivot, n1 Point) {
f(p, halfWidth, pivot, n1)
}
// A Joiner signifies how to join interior nodes of a stroked path.
type Joiner interface {
// Join adds a join to the two sides of a stroked path given a pivot
// point and the normal vectors of the trailing and leading segments.
// Both normals have length equal to half of the stroke width.
Join(lhs, rhs Adder, halfWidth Fix32, pivot, n0, n1 Point)
}
// The JoinerFunc type adapts an ordinary function to be a Joiner.
type JoinerFunc func(lhs, rhs Adder, halfWidth Fix32, pivot, n0, n1 Point)
func (f JoinerFunc) Join(lhs, rhs Adder, halfWidth Fix32, pivot, n0, n1 Point) {
f(lhs, rhs, halfWidth, pivot, n0, n1)
}
// RoundCapper adds round caps to a stroked path.
var RoundCapper Capper = CapperFunc(roundCapper)
func roundCapper(p Adder, halfWidth Fix32, pivot, n1 Point) {
// The cubic Bézier approximation to a circle involves the magic number
// (√2 - 1) * 4/3, which is approximately 141/256.
const k = 141
e := n1.Rot90CCW()
side := pivot.Add(e)
start, end := pivot.Sub(n1), pivot.Add(n1)
d, e := n1.Mul(k), e.Mul(k)
p.Add3(start.Add(e), side.Sub(d), side)
p.Add3(side.Add(d), end.Add(e), end)
}
// ButtCapper adds butt caps to a stroked path.
var ButtCapper Capper = CapperFunc(buttCapper)
func buttCapper(p Adder, halfWidth Fix32, pivot, n1 Point) {
p.Add1(pivot.Add(n1))
}
// SquareCapper adds square caps to a stroked path.
var SquareCapper Capper = CapperFunc(squareCapper)
func squareCapper(p Adder, halfWidth Fix32, pivot, n1 Point) {
e := n1.Rot90CCW()
side := pivot.Add(e)
p.Add1(side.Sub(n1))
p.Add1(side.Add(n1))
p.Add1(pivot.Add(n1))
}
// RoundJoiner adds round joins to a stroked path.
var RoundJoiner Joiner = JoinerFunc(roundJoiner)
func roundJoiner(lhs, rhs Adder, haflWidth Fix32, pivot, n0, n1 Point) {
dot := n0.Rot90CW().Dot(n1)
if dot >= 0 {
addArc(lhs, pivot, n0, n1)
rhs.Add1(pivot.Sub(n1))
} else {
lhs.Add1(pivot.Add(n1))
addArc(rhs, pivot, n0.Neg(), n1.Neg())
}
}
// BevelJoiner adds bevel joins to a stroked path.
var BevelJoiner Joiner = JoinerFunc(bevelJoiner)
func bevelJoiner(lhs, rhs Adder, haflWidth Fix32, pivot, n0, n1 Point) {
lhs.Add1(pivot.Add(n1))
rhs.Add1(pivot.Sub(n1))
}
// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
// the two possible arcs is taken, i.e. the one spanning <= 180 degrees.
// The two vectors n0 and n1 must be of equal length.
func addArc(p Adder, pivot, n0, n1 Point) {
// r2 is the square of the length of n0.
r2 := n0.Dot(n0)
if r2 < epsilon {
// The arc radius is so small that we collapse to a straight line.
p.Add1(pivot.Add(n1))
return
}
// We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
// a final quadratic segment from s to n1. Each 45-degree segment has control
// points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled, rotated and
// translated. tan(π/8) is approximately 106/256.
const tpo8 = 106
var s Point
// We determine which octant the angle between n0 and n1 is in via three dot products.
// m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135 degrees.
m0 := n0.Rot45CW()
m1 := n0.Rot90CW()
m2 := m0.Rot90CW()
if m1.Dot(n1) >= 0 {
if n0.Dot(n1) >= 0 {
if m2.Dot(n1) <= 0 {
// n1 is between 0 and 45 degrees clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees clockwise of n0.
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
s = m0
}
} else {
pm1, n0t := pivot.Add(m1), n0.Mul(tpo8)
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
p.Add2(pm1.Add(n0t), pm1)
if m0.Dot(n1) >= 0 {
// n1 is between 90 and 135 degrees clockwise of n0.
s = m1
} else {
// n1 is between 135 and 180 degrees clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Add(m2))
s = m2
}
}
} else {
if n0.Dot(n1) >= 0 {
if m0.Dot(n1) >= 0 {
// n1 is between 0 and 45 degrees counter-clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees counter-clockwise of n0.
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
s = m2.Neg()
}
} else {
pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8)
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
p.Add2(pm1.Add(n0t), pm1)
if m2.Dot(n1) <= 0 {
// n1 is between 90 and 135 degrees counter-clockwise of n0.
s = m1.Neg()
} else {
// n1 is between 135 and 180 degrees counter-clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
s = m0.Neg()
}
}
}
// The final quadratic segment has two endpoints s and n1 and the middle
// control point is a multiple of s.Add(n1), i.e. it is on the angle bisector
// of those two points. The multiple ranges between 128/256 and 150/256 as
// the angle between s and n1 ranges between 0 and 45 degrees.
// When the angle is 0 degrees (i.e. s and n1 are coincident) then s.Add(n1)
// is twice s and so the middle control point of the degenerate quadratic
// segment should be half s.Add(n1), and half = 128/256.
// When the angle is 45 degrees then 150/256 is the ratio of the lengths of
// the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
// d is the normalized dot product between s and n1. Since the angle ranges
// between 0 and 45 degrees then d ranges between 256/256 and 181/256.
d := 256 * s.Dot(n1) / r2
multiple := Fix32(150 - 22*(d-181)/(256-181))
p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
}
// midpoint returns the midpoint of two Points.
func midpoint(a, b Point) Point {
return Point{(a.X + b.X) / 2, (a.Y + b.Y) / 2}
}
// angleGreaterThan45 returns whether the angle between two vectors is more
// than 45 degrees.
func angleGreaterThan45(v0, v1 Point) bool {
v := v0.Rot45CCW()
return v.Dot(v1) < 0 || v.Rot90CW().Dot(v1) < 0
}
// interpolate returns the point (1-t)*a + t*b.
func interpolate(a, b Point, t Fix64) Point {
s := 65536 - t
x := s*Fix64(a.X) + t*Fix64(b.X)
y := s*Fix64(a.Y) + t*Fix64(b.Y)
return Point{Fix32(x >> 16), Fix32(y >> 16)}
}
// curviest2 returns the value of t for which the quadratic parametric curve
// (1-t)²*a + 2*t*(1-t).b + t²*c has maximum curvature.
//
// The curvature of the parametric curve f(t) = (x(t), y(t)) is
// |x′y″-y′x″| / (x′²+y′²)^(3/2).
//
// Let d = b-a and e = c-2*b+a, so that f′(t) = 2*d+2*e*t and f″(t) = 2*e.
// The curvature's numerator is (2*dx+2*ex*t)*(2*ey)-(2*dy+2*ey*t)*(2*ex),
// which simplifies to 4*dx*ey-4*dy*ex, which is constant with respect to t.
//
// Thus, curvature is extreme where the denominator is extreme, i.e. where
// (x′²+y′²) is extreme. The first order condition is that
// 2*x′*x″+2*y′*y″ = 0, or (dx+ex*t)*ex + (dy+ey*t)*ey = 0.
// Solving for t gives t = -(dx*ex+dy*ey) / (ex*ex+ey*ey).
func curviest2(a, b, c Point) Fix64 {
dx := int64(b.X - a.X)
dy := int64(b.Y - a.Y)
ex := int64(c.X - 2*b.X + a.X)
ey := int64(c.Y - 2*b.Y + a.Y)
if ex == 0 && ey == 0 {
return 32768
}
return Fix64(-65536 * (dx*ex + dy*ey) / (ex*ex + ey*ey))
}
// A stroker holds state for stroking a path.
type stroker struct {
// p is the destination that records the stroked path.
p Adder
// u is the half-width of the stroke.
u Fix32
// cr and jr specify how to end and connect path segments.
cr Capper
jr Joiner
// r is the reverse path. Stroking a path involves constructing two
// parallel paths 2*u apart. The first path is added immediately to p,
// the second path is accumulated in r and eventually added in reverse.
r Path
// a is the most recent segment point. anorm is the segment normal of
// length u at that point.
a, anorm Point
}
// addNonCurvy2 adds a quadratic segment to the stroker, where the segment
// defined by (k.a, b, c) achieves maximum curvature at either k.a or c.
func (k *stroker) addNonCurvy2(b, c Point) {
// We repeatedly divide the segment at its middle until it is straight
// enough to approximate the stroke by just translating the control points.
// ds and ps are stacks of depths and points. t is the top of the stack.
const maxDepth = 5
var (
ds [maxDepth + 1]int
ps [2*maxDepth + 3]Point
t int
)
// Initially the ps stack has one quadratic segment of depth zero.
ds[0] = 0
ps[2] = k.a
ps[1] = b
ps[0] = c
anorm := k.anorm
var cnorm Point
for {
depth := ds[t]
a := ps[2*t+2]
b := ps[2*t+1]
c := ps[2*t+0]
ab := b.Sub(a)
bc := c.Sub(b)
abIsSmall := ab.Dot(ab) < Fix64(1<<16)
bcIsSmall := bc.Dot(bc) < Fix64(1<<16)
if abIsSmall && bcIsSmall {
// Approximate the segment by a circular arc.
cnorm = bc.Norm(k.u).Rot90CCW()
mac := midpoint(a, c)
addArc(k.p, mac, anorm, cnorm)
addArc(&k.r, mac, anorm.Neg(), cnorm.Neg())
} else if depth < maxDepth && angleGreaterThan45(ab, bc) {
// Divide the segment in two and push both halves on the stack.
mab := midpoint(a, b)
mbc := midpoint(b, c)
t++
ds[t+0] = depth + 1
ds[t-1] = depth + 1
ps[2*t+2] = a
ps[2*t+1] = mab
ps[2*t+0] = midpoint(mab, mbc)
ps[2*t-1] = mbc
continue
} else {
// Translate the control points.
bnorm := c.Sub(a).Norm(k.u).Rot90CCW()
cnorm = bc.Norm(k.u).Rot90CCW()
k.p.Add2(b.Add(bnorm), c.Add(cnorm))
k.r.Add2(b.Sub(bnorm), c.Sub(cnorm))
}
if t == 0 {
k.a, k.anorm = c, cnorm
return
}
t--
anorm = cnorm
}
panic("unreachable")
}
// Add1 adds a linear segment to the stroker.
func (k *stroker) Add1(b Point) {
bnorm := b.Sub(k.a).Norm(k.u).Rot90CCW()
if len(k.r) == 0 {
k.p.Start(k.a.Add(bnorm))
k.r.Start(k.a.Sub(bnorm))
} else {
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, bnorm)
}
k.p.Add1(b.Add(bnorm))
k.r.Add1(b.Sub(bnorm))
k.a, k.anorm = b, bnorm
}
// Add2 adds a quadratic segment to the stroker.
func (k *stroker) Add2(b, c Point) {
ab := b.Sub(k.a)
bc := c.Sub(b)
abnorm := ab.Norm(k.u).Rot90CCW()
if len(k.r) == 0 {
k.p.Start(k.a.Add(abnorm))
k.r.Start(k.a.Sub(abnorm))
} else {
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, abnorm)
}
// Approximate nearly-degenerate quadratics by linear segments.
abIsSmall := ab.Dot(ab) < epsilon
bcIsSmall := bc.Dot(bc) < epsilon
if abIsSmall || bcIsSmall {
acnorm := c.Sub(k.a).Norm(k.u).Rot90CCW()
k.p.Add1(c.Add(acnorm))
k.r.Add1(c.Sub(acnorm))
k.a, k.anorm = c, acnorm
return
}
// The quadratic segment (k.a, b, c) has a point of maximum curvature.
// If this occurs at an end point, we process the segment as a whole.
t := curviest2(k.a, b, c)
if t <= 0 || t >= 65536 {
k.addNonCurvy2(b, c)
return
}
// Otherwise, we perform a de Casteljau decomposition at the point of
// maximum curvature and process the two straighter parts.
mab := interpolate(k.a, b, t)
mbc := interpolate(b, c, t)
mabc := interpolate(mab, mbc, t)
// If the vectors ab and bc are close to being in opposite directions,
// then the decomposition can become unstable, so we approximate the
// quadratic segment by two linear segments joined by an arc.
bcnorm := bc.Norm(k.u).Rot90CCW()
if abnorm.Dot(bcnorm) < -Fix64(k.u)*Fix64(k.u)*2047/2048 {
pArc := abnorm.Dot(bc) < 0
k.p.Add1(mabc.Add(abnorm))
if pArc {
z := abnorm.Rot90CW()
addArc(k.p, mabc, abnorm, z)
addArc(k.p, mabc, z, bcnorm)
}
k.p.Add1(mabc.Add(bcnorm))
k.p.Add1(c.Add(bcnorm))
k.r.Add1(mabc.Sub(abnorm))
if !pArc {
z := abnorm.Rot90CW()
addArc(&k.r, mabc, abnorm.Neg(), z)
addArc(&k.r, mabc, z, bcnorm.Neg())
}
k.r.Add1(mabc.Sub(bcnorm))
k.r.Add1(c.Sub(bcnorm))
k.a, k.anorm = c, bcnorm
return
}
// Process the decomposed parts.
k.addNonCurvy2(mab, mabc)
k.addNonCurvy2(mbc, c)
}
// Add3 adds a cubic segment to the stroker.
func (k *stroker) Add3(b, c, d Point) {
panic("freetype/raster: stroke unimplemented for cubic segments")
}
// stroke adds the stroked Path q to p, where q consists of exactly one curve.
func (k *stroker) stroke(q Path) {
// Stroking is implemented by deriving two paths each k.u apart from q.
// The left-hand-side path is added immediately to k.p; the right-hand-side
// path is accumulated in k.r. Once we've finished adding the LHS to k.p,
// we add the RHS in reverse order.
k.r = make(Path, 0, len(q))
k.a = Point{q[1], q[2]}
for i := 4; i < len(q); {
switch q[i] {
case 1:
k.Add1(Point{q[i+1], q[i+2]})
i += 4
case 2:
k.Add2(Point{q[i+1], q[i+2]}, Point{q[i+3], q[i+4]})
i += 6
case 3:
k.Add3(Point{q[i+1], q[i+2]}, Point{q[i+3], q[i+4]}, Point{q[i+5], q[i+6]})
i += 8
default:
panic("freetype/raster: bad path")
}
}
if len(k.r) == 0 {
return
}
// TODO(nigeltao): if q is a closed curve then we should join the first and
// last segments instead of capping them.
k.cr.Cap(k.p, k.u, q.lastPoint(), k.anorm.Neg())
addPathReversed(k.p, k.r)
pivot := q.firstPoint()
k.cr.Cap(k.p, k.u, pivot, pivot.Sub(Point{k.r[1], k.r[2]}))
}
// Stroke adds q stroked with the given width to p. The result is typically
// self-intersecting and should be rasterized with UseNonZeroWinding.
// cr and jr may be nil, which defaults to a RoundCapper or RoundJoiner.
func Stroke(p Adder, q Path, width Fix32, cr Capper, jr Joiner) {
if len(q) == 0 {
return
}
if cr == nil {
cr = RoundCapper
}
if jr == nil {
jr = RoundJoiner
}
if q[0] != 0 {
panic("freetype/raster: bad path")
}
s := stroker{p: p, u: width / 2, cr: cr, jr: jr}
i := 0
for j := 4; j < len(q); {
switch q[j] {
case 0:
s.stroke(q[i:j])
i, j = j, j+4
case 1:
j += 4
case 2:
j += 6
case 3:
j += 8
default:
panic("freetype/raster: bad path")
}
}
s.stroke(q[i:])
}