https://leetcode.com/problems/lru-cache/description/
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
由于是保留是最近使用的N条数据,这就和队列的特性很符合, 先进入队列的,先出队列。
因此思路就是用一个队列来记录目前缓存的所有key, 每次push都进行判断,如果 超出最大容量限制则进行清除缓存的操作, 具体清除谁就按照刚才说的队列方式进行处理,同时对key进行入队操作。
get的时候,如果缓存中有,则调整队列(具体操作为删除指定元素和入队两个操作)。 缓存中没有则返回-1
-
队列简化操作
-
队列的操作是这道题的灵魂, 很容易少考虑情况
/*
* @lc app=leetcode id=146 lang=javascript
*
* [146] LRU Cache
*
* https://leetcode.com/problems/lru-cache/description/
*
* algorithms
* Hard (24.17%)
* Total Accepted: 272.8K
* Total Submissions: 1.1M
* Testcase Example: '["LRUCache","put","put","get","put","get","put","get","get","get"]\n[[2],[1,1],[2,2],[1],[3,3],[2],[4,4],[1],[3],[4]]'
*
*
* Design and implement a data structure for Least Recently Used (LRU) cache.
* It should support the following operations: get and put.
*
*
*
* get(key) - Get the value (will always be positive) of the key if the key
* exists in the cache, otherwise return -1.
* put(key, value) - Set or insert the value if the key is not already present.
* When the cache reached its capacity, it should invalidate the least recently
* used item before inserting a new item.
*
*
* Follow up:
* Could you do both operations in O(1) time complexity?
*
* Example:
*
* LRUCache cache = new LRUCache( 2 );
*
* cache.put(1, 1);
* cache.put(2, 2);
* cache.get(1); // returns 1
* cache.put(3, 3); // evicts key 2
* cache.get(2); // returns -1 (not found)
* cache.put(4, 4); // evicts key 1
* cache.get(1); // returns -1 (not found)
* cache.get(3); // returns 3
* cache.get(4); // returns 4
*
*
*/
/**
* @param {number} capacity
*/
var LRUCache = function(capacity) {
this.cache = {};
this.capacity = capacity;
this.size = 0;
this.queue = [];
};
/**
* @param {number} key
* @return {number}
*/
LRUCache.prototype.get = function(key) {
const hit = this.cache[key];
if (hit !== undefined) {
this.queue = this.queue.filter(q => q !== key);
this.queue.push(key);
return hit;
}
return -1;
};
/**
* @param {number} key
* @param {number} value
* @return {void}
*/
LRUCache.prototype.put = function(key, value) {
const hit = this.cache[key];
// update cache
this.cache[key] = value;
if (!hit) {
// invalid cache and resize size;
if (this.size === this.capacity) {
// invalid cache
const key = this.queue.shift();
this.cache[key] = undefined;
} else {
this.size = this.size + 1;
}
this.queue.push(key);
} else {
this.queue = this.queue.filter(q => q !== key);
this.queue.push(key);
}
};
/**
* Your LRUCache object will be instantiated and called as such:
* var obj = new LRUCache(capacity)
* var param_1 = obj.get(key)
* obj.put(key,value)
*/