-
Notifications
You must be signed in to change notification settings - Fork 29
/
wgan_face.py
248 lines (222 loc) · 11.7 KB
/
wgan_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import time
import argparse
import importlib
import tensorflow as tf
import tensorflow.contrib as tc
import matplotlib
matplotlib.use('Agg')
import cPickle as pickle
from numpy import linalg, argmin, array, arange
import matplotlib.gridspec as gridspec
from utilize import loaddata_face
import logging # these 2 lines ar used in GPU3
logging.getLogger("tensorflow").setLevel(logging.ERROR)
from visualize import *
class WassersteinGAN(object):
def __init__(self, g_net, d_net, x_sampler, z_sampler, data, model, batch_size=64): # changed
self.model = model
self.data = data
self.g_net = g_net
self.d_net = d_net
self.x_sampler = x_sampler
self.z_sampler = z_sampler
self.x_dim = self.d_net.x_dim
self.z_dim = self.g_net.z_dim
# self.x = tf.placeholder(tf.float32, [None] + self.x_dim, name='x')
# self.z = tf.placeholder(tf.float32, [None, self.z_dim], name='z')
self.x = tf.placeholder(tf.float32, [None, self.x_dim], name='x')
self.z = tf.placeholder(tf.float32, [None, self.z_dim], name='z')
self.x_ = self.g_net(self.z)
self.d = self.d_net(self.x, reuse=False)
self.d_ = self.d_net(self.x_)
self.g_loss = tf.reduce_mean(self.d_)
self.d_loss = tf.reduce_mean(self.d) - tf.reduce_mean(self.d_)
self.reg = tc.layers.apply_regularization(
tc.layers.l1_regularizer(2.5e-5),
weights_list=[var for var in tf.global_variables() if 'weights' in var.name]
)
self.g_loss_reg = self.g_loss + self.reg
self.d_loss_reg = self.d_loss + self.reg
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
self.d_rmsprop = tf.train.RMSPropOptimizer(learning_rate=5e-5) # DP case
grads_and_vars = self.d_rmsprop.compute_gradients(-1*self.d_loss_reg, var_list=self.d_net.vars)
dp_grads_and_vars = [] # noisy version
for gv in grads_and_vars: # for each pair
g = gv[0] # get the gradient, type in loop one: Tensor("gradients/AddN_37:0", shape=(4, 4, 1, 64), dtype=float32)
#print g # shape of all vars
if g is not None: # skip None case
g = self.dpnoise(g, batch_size) # add noise on the tensor, type in loop one: Tensor("Add:0", shape=(4, 4, 1, 64), dtype=float32)
dp_grads_and_vars.append((g, gv[1]))
self.d_rmsprop_new = self.d_rmsprop.apply_gradients(dp_grads_and_vars) # should assign to a new optimizer
# self.d_rmsprop = tf.train.RMSPropOptimizer(learning_rate=5e-5) \
# .minimize(-1*self.d_loss_reg, var_list=self.d_net.vars) # non-DP case
self.g_rmsprop = tf.train.RMSPropOptimizer(learning_rate=5e-5) \
.minimize(-1*self.g_loss_reg, var_list=self.g_net.vars)
self.d_clip = [v.assign(tf.clip_by_value(v, -0.01, 0.01)) for v in self.d_net.vars]
self.d_net_var_grad = [i for i in tf.gradients(self.d_loss_reg, self.d_net.vars) if i is not None] # explore the effect of noise on norm of D net variables's gradient vector, also remove None type
self.norm_d_net_var_grad = []
gpu_options = tf.GPUOptions(allow_growth=True)
self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
# self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=True))
self.g_loss_store = [] # store loss of generator
self.d_loss_store = [] # store loss of discriminator
self.wdis_store = [] # store Wasserstein distance, new added
# print self.d_net.vars
# print self.g_net.vars
def train(self, batch_size=64, num_batches=500000):
plt.ion()
self.sess.run(tf.initialize_all_variables())
start_time = time.time()
for t in range(0, num_batches):
d_iters = 5
if t % 500 == 0 or t < 25: # make the discriminator more accurate at certain iterations
d_iters = 100
for _ in range(0, d_iters): # train discriminator
data_td = self.x_sampler(batch_size) # data_td: data for training discriminator, data_td.shape: (64, 32, 32, 1)
bz = self.z_sampler(batch_size, self.z_dim)
self.sess.run(self.d_clip)
self.sess.run(self.d_rmsprop_new, feed_dict={self.x: data_td, self.z: bz}) # DP case
# self.sess.run(self.d_rmsprop, feed_dict={self.x: data_td, self.z: bz}) # non-DP case
bz = self.z_sampler(batch_size, self.z_dim) # train generator, another batch of z sample
self.sess.run(self.g_rmsprop, feed_dict={self.z: bz, self.x: data_td})
if t % 100 == 0: # evaluate loss and norm of gradient vector
bx = self.x_sampler(batch_size) # the reason we generate another batch of sample is that we want to see if the distance of 2 distributions are indeed pulled closer
bz = self.z_sampler(batch_size, self.z_dim)
rd_loss = self.sess.run(
self.d_loss, feed_dict={self.x: bx, self.z: bz}
)
rg_loss = self.sess.run(
self.g_loss, feed_dict={self.z: bz, self.x: bx}
)
# d_net_var_grad_val = self.sess.run(self.d_net_var_grad, feed_dict={self.x: bx, self.z: bz})
# if type(d_net_var_grad_val) != type([0]):
# d_net_var_grad_val = [d_net_var_grad_val]
# self.norm_d_net_var_grad.append(self.norm_w(d_net_var_grad_val))
print('Iter [%8d] Time [%5.4f] d_loss [%.4f] g_loss [%.4f]' %
(t, time.time() - start_time, rd_loss, rg_loss))
# store rd_loss, rg_loss and W-dis, new added
self.g_loss_store.append(rg_loss) # g_loss will increase, here is not self.g_loss nor self.g_loss_reg
self.d_loss_store.append(rd_loss) # d_loss will decrease
self.wdis_store.append(rd_loss) # Wasserstein distance will decrease
if t % 1000 == 0: # generate image
bz = self.z_sampler(1, self.z_dim) # changed, only generate 1 image
bx = self.sess.run(self.x_, feed_dict={self.z: bz})
bx = xs.data2img(bx)
fig = plt.figure(self.data + '.' + self.model)
grid_show(fig, bx, xs.shape)
fig.savefig('./result/genefig/{}/{}.jpg'.format(self.data, t)) # changed
if t % 100000 == 0: # store generator and discriminator, new added
saver = tf.train.Saver()
save_path = saver.save(self.sess, "result/sesssave/sess.ckpt")
print("Session saved in file: %s" % save_path)
N = 10 # generate images from generator, after finish training
z_sample = self.z_sampler(N, self.z_dim)
x_gene = self.sess.run(self.x_, feed_dict={self.z: z_sample})
path = './face/CelebA/img_align_celeba_10000_1st_r_28/'
face_data = loaddata_face(path, len([name for name in os.listdir(path) if os.path.isfile(os.path.join(path, name))]))
face_data_n = array(face_data) # face_data is already normlized (/255)
x_training_data = [] # corresponding nearest training points in whole face data
for i in range(N):
x_ind = self.find(x_gene[i], face_data_n) # find the nearest training point for each generated data point in whole face data
x_training_data.append(face_data_n[x_ind])
x_gene = x_gene.tolist() # all to list type
x_training_data = [i.tolist() for i in x_training_data]
# store generated data, nearest data (label) and figures
with open('./result/genefinalfig/x_gene.pickle', 'wb') as fp:
pickle.dump(x_gene, fp)
with open('./result/genefinalfig/x_training_data.pickle', 'wb') as fp:
pickle.dump(x_training_data, fp)
with open('./result/genefinalfig/norm_d_net_var_grad.pickle', 'wb') as fp:
pickle.dump(self.norm_d_net_var_grad, fp)
x_gene = array(x_gene)*255 # to 0-255 scale, rbg image
x_training_data = array(x_training_data)*255
plt.figure(figsize=(5, 60))
G = gridspec.GridSpec(N, 1)
for i in range(N):
plt.subplot(G[i, :])
plt.imshow(x_gene[i], interpolation='nearest')
plt.xticks(())
plt.yticks(())
plt.tight_layout()
plt.savefig('./result/genefinalfig/x_gene.png')
plt.clf()
for i in range(N):
plt.subplot(G[i, :])
plt.imshow(x_training_data[i], interpolation='nearest')
plt.xticks(())
plt.yticks(())
plt.tight_layout()
plt.savefig('./result/genefinalfig/x_training_data.png')
# store generator and discriminator
saver = tf.train.Saver()
save_path = saver.save(self.sess, "result/sesssave/sess.ckpt")
print("Training finished, session saved in file: %s" % save_path)
def dpnoise(self, tensor, batch_size):
'''add noise to tensor'''
s = tensor.get_shape().as_list() # get shape of the tensor
sigma = 0.00001 # assign it manually
cg = 160000.0
rt = tf.random_normal(s, mean=0.0, stddev=sigma * cg)
t = tf.add(tensor, tf.scalar_mul((1.0 / batch_size), rt))
return t
def loss_store(self):
'''store everything new added'''
# store figure
t = arange(len(self.g_loss_store))
plt.close() # clears the entire current figure with all its axes
plt.plot(t, self.g_loss_store, 'b--')
plt.xlabel('Generator iterations (*10^{2})')
plt.ylabel('Generator loss')
plt.savefig('./result/lossfig/gloss.jpg')
plt.clf()
plt.plot(t, self.d_loss_store, 'b--')
plt.xlabel('Generator iterations (*10^{2})')
plt.ylabel('Discriminator loss')
plt.savefig('./result/lossfig/dloss.jpg')
plt.clf()
plt.plot(t, self.wdis_store, 'b--')
plt.xlabel('Generator iterations (*10^{2})')
plt.ylabel('Wasserstein distance')
plt.savefig('./result/lossfig/wdis.jpg')
plt.clf()
plt.plot(t, self.norm_d_net_var_grad, 'b--')
plt.xlabel('Generator iterations (*10^{2})')
plt.ylabel('Norm of gradient vector')
plt.savefig('./result/lossfig/ngv.jpg')
# store to file
gpick = file("result/lossfile/gloss.pckl", "w")
pickle.dump(self.g_loss_store, gpick)
gpick.close()
dpick = file("result/lossfile/dloss.pckl", "w")
pickle.dump(self.d_loss_store, dpick)
dpick.close()
wpick = file("result/lossfile/wdis.pckl", "w")
pickle.dump(self.wdis_store, wpick)
wpick.close()
npick = file("result/lossfile/ngv.pckl", "w")
pickle.dump(self.norm_d_net_var_grad, npick)
npick.close()
def find(self, gen, train):
dist = []
for i in range(len(train)):
dist.append(linalg.norm(array(gen) - array(train[i])))
return argmin(dist)
def norm_w(self, v):
return sum([linalg.norm(i) for i in v])
if __name__ == '__main__':
parser = argparse.ArgumentParser('')
parser.add_argument('--data', type=str, default='face')
parser.add_argument('--model', type=str, default='dcgan')
parser.add_argument('--gpus', type=str, default='0')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
data = importlib.import_module(args.data) # from parser
model = importlib.import_module(args.data + '.' + args.model)
xs = data.DataSampler()
zs = data.NoiseSampler()
d_net = model.Discriminator()
g_net = model.Generator()
wgan = WassersteinGAN(g_net, d_net, xs, zs, args.data, args.model)
wgan.train()
wgan.loss_store() # new added