-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
371 lines (299 loc) · 12.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import os
import math
import cv2
import numpy as np
import onnxruntime
from onnxruntime.capi import _pybind_state as C
import argparse
__labels = [
"FEMALE_GENITALIA_COVERED",
"FACE_FEMALE",
"BUTTOCKS_EXPOSED",
"FEMALE_BREAST_EXPOSED",
"FEMALE_GENITALIA_EXPOSED",
"MALE_BREAST_EXPOSED",
"ANUS_EXPOSED",
"FEET_EXPOSED",
"BELLY_COVERED",
"FEET_COVERED",
"ARMPITS_COVERED",
"ARMPITS_EXPOSED",
"FACE_MALE",
"BELLY_EXPOSED",
"MALE_GENITALIA_EXPOSED",
"ANUS_COVERED",
"FEMALE_BREAST_COVERED",
"BUTTOCKS_COVERED",
]
def _read_image(image_path, target_size=320):
img = cv2.imread(image_path)
img_height, img_width = img.shape[:2]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
aspect = img_width / img_height
if img_height > img_width:
new_height = target_size
new_width = int(round(target_size * aspect))
else:
new_width = target_size
new_height = int(round(target_size / aspect))
resize_factor = math.sqrt(
(img_width**2 + img_height**2) / (new_width**2 + new_height**2)
)
img = cv2.resize(img, (new_width, new_height))
pad_x = target_size - new_width
pad_y = target_size - new_height
pad_top, pad_bottom = [int(i) for i in np.floor([pad_y, pad_y]) / 2]
pad_left, pad_right = [int(i) for i in np.floor([pad_x, pad_x]) / 2]
img = cv2.copyMakeBorder(
img,
pad_top,
pad_bottom,
pad_left,
pad_right,
cv2.BORDER_CONSTANT,
value=[0, 0, 0],
)
img = cv2.resize(img, (target_size, target_size))
image_data = img.astype("float32") / 255.0 # normalize
image_data = np.transpose(image_data, (2, 0, 1))
image_data = np.expand_dims(image_data, axis=0)
return image_data, resize_factor, pad_left, pad_top
def _postprocess(output, resize_factor, pad_left, pad_top):
outputs = np.transpose(np.squeeze(output[0]))
rows = outputs.shape[0]
boxes = []
scores = []
class_ids = []
for i in range(rows):
classes_scores = outputs[i][4:]
max_score = np.amax(classes_scores)
if max_score >= 0.2:
class_id = np.argmax(classes_scores)
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
left = int(round((x - w * 0.5 - pad_left) * resize_factor))
top = int(round((y - h * 0.5 - pad_top) * resize_factor))
width = int(round(w * resize_factor))
height = int(round(h * resize_factor))
class_ids.append(class_id)
scores.append(max_score)
boxes.append([left, top, width, height])
indices = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45)
detections = []
for i in indices:
box = boxes[i]
score = scores[i]
class_id = class_ids[i]
detections.append(
{"class": __labels[class_id], "score": float(score), "box": box}
)
return detections
class NudeDetector:
def __init__(self, providers=None):
self.onnx_session = onnxruntime.InferenceSession(
os.path.join(os.path.dirname(__file__), "Models/best.onnx"),
providers=C.get_available_providers() if not providers else providers,
)
model_inputs = self.onnx_session.get_inputs()
input_shape = model_inputs[0].shape
self.input_width = input_shape[2] # 320
self.input_height = input_shape[3] # 320
self.input_name = model_inputs[0].name
# Initialize exception rules to None
self.blur_exception_rules = None
self.full_blur_count = 0 # Initialize the full blur count
def load_exception_rules(self, rule_file_path):
if not rule_file_path:
rule_file_path = "BlurException.rule"
self.blur_exception_rules = {}
with open(rule_file_path, "r") as rule_file:
for line in rule_file:
parts = line.strip().split("=")
if len(parts) == 2:
label, blur = parts[0].strip(), parts[1].strip()
self.blur_exception_rules[label] = blur.lower() == "true"
print("Loaded exception rules:")
print(self.blur_exception_rules) # Add this line for debugging
def should_apply_blur(self, label):
should_blur = self.blur_exception_rules.get(label, True)
if should_blur:
self.full_blur_count += 1 # Increment the full blur count
return should_blur
def detect(self, image_path):
preprocessed_image, resize_factor, pad_left, pad_top = _read_image(
image_path, self.input_width
)
outputs = self.onnx_session.run(None, {self.input_name: preprocessed_image})
detections = _postprocess(outputs, resize_factor, pad_left, pad_top)
return detections
def censor(self, image_path, apply_blur=False, classes=[], output_path=None, full_blur_rule=0):
detections = self.detect(image_path)
if classes:
detections = [
detection for detection in detections if detection["class"] in classes
]
img = cv2.imread(image_path)
img_boxes = img.copy()
img_combined = img.copy()
if apply_blur:
img_blur = img.copy()
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
font_thickness = 1
log_data = [] # List to store information for the log file
exposed_count = 0 # Counter for exposed labels
for detection in detections:
box = detection["box"]
x, y, w, h = box[0], box[1], box[2], box[3]
label = detection["class"]
label_text = label if "EXPOSED" not in label else "Unsafe, " + label
log_data.append({"label": label, "box": box})
should_blur = self.should_apply_blur(label)
print(f"Label: {label}, Should blur: {should_blur}")
if apply_blur and "EXPOSED" in label and should_blur:
print(f"Blur should be applied to: {label}")
# Blur only the regions labeled as "EXPOSED" and not in exceptions
img_blur[y:y + h, x:x + w] = cv2.GaussianBlur(img_blur[y:y + h, x:x + w], (23, 23), 30)
exposed_count += 1
else:
# Draw boxes around NSFW regions
cv2.rectangle(img_boxes, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Add label near the box
cv2.putText(img_boxes, label_text, (x, y - 5), font, font_scale, (0, 255, 0), font_thickness, cv2.LINE_AA)
# Draw boxes on the combined image
cv2.rectangle(img_combined, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Add label near the box
cv2.putText(img_combined, label_text, (x, y - 5), font, font_scale, (0, 255, 0), font_thickness, cv2.LINE_AA)
if not output_path:
input_path, ext = os.path.splitext(args.input)
if apply_blur:
output_path = f"output/{os.path.basename(input_path)}_Blur{ext}"
else:
output_path = f"output/{os.path.basename(input_path)}_Detect{ext}"
if apply_blur:
if exposed_count >= full_blur_rule:
# Apply full blur to the whole image
img_blur = cv2.GaussianBlur(img_blur, (23, 23), 30)
cv2.imwrite(output_path, img_blur)
else:
# Save the image with boxes and labels
cv2.imwrite(output_path, img_combined)
# Save the boxes detection image with labels
detect_path = f"Prosses/{os.path.basename(output_path)}"
cv2.imwrite(detect_path, img_boxes)
# Create a log file for the image
log_file_path = f"Logs/{os.path.basename(output_path)}.log"
with open(log_file_path, "w") as log_file:
for data in log_data:
log_file.write(f"Label: {data['label']}, Box: {data['box']}\n")
return output_path
def parse_args():
parser = argparse.ArgumentParser(description="Nude Detector")
parser.add_argument("-i", "--input", type=str, help="Path to the input image", required=True)
parser.add_argument(
"-o",
"--output",
type=str,
default=None,
help="Path to save the censored image. If not provided, a default path will be used.",
)
parser.add_argument(
"-b",
"--blur",
action="store_true",
help="Apply blur to NSFW regions instead of drawing boxes",
)
parser.add_argument(
"-e",
"--exception",
type=str,
default=None,
help="Path to the blur exception rules file",
)
parser.add_argument(
"-fbr",
"--full_blur_rule",
type=int,
default=0,
help="Number of exposed boxes to trigger full image blur",
)
return parser.parse_args()
def create_directories():
# Create directories if they don't exist
os.makedirs("Blur", exist_ok=True)
os.makedirs("Prosses", exist_ok=True)
os.makedirs("output", exist_ok=True)
if __name__ == "__main__":
create_directories() # Create directories before processing
args = parse_args()
detector = NudeDetector()
# Load exception rules from file
exception_file_path = args.exception or "BlurException.rule"
# Check if the exception file exists, if not, create it with default values
if not os.path.exists(exception_file_path):
with open(exception_file_path, "w") as exception_file:
exception_file.write("\n".join([
"BELLY_EXPOSED = true",
"MALE_GENITALIA_EXPOSED = true",
"BUTTOCKS_EXPOSED = true",
"FEMALE_BREAST_EXPOSED = true",
"FEMALE_GENITALIA_EXPOSED = true",
"MALE_BREAST_EXPOSED = true",
"ANUS_EXPOSED = true",
"FEET_EXPOSED = true",
"ARMPITS_EXPOSED = true",
"FACE_FEMALE = true",
"FACE_MALE = true",
"BELLY_COVERED = true",
"FEMALE_GENITALIA_COVERED = true",
"BUTTOCKS_COVERED = true",
"FEET_COVERED = true",
"ARMPITS_COVERED = true",
"ANUS_COVERED = true",
"FEMALE_BREAST_COVERED = true",
]))
detector.load_exception_rules(exception_file_path)
detections = detector.detect(args.input)
output_path = args.output
if not output_path:
input_path, ext = os.path.splitext(args.input)
output_path = f"output/{os.path.basename(input_path)}_Output{ext}"
blur_path = f"Blur/{os.path.basename(output_path)}"
detect_path = f"Prosses/{os.path.basename(output_path)}"
# Process blurred image and save in "Blur" directory
blur_censored_path = detector.censor(args.input, apply_blur=True, output_path=blur_path, full_blur_rule=args.full_blur_rule)
img_blur = cv2.imread(blur_censored_path)
# Process non-blurred image and save in "Prosses" directory
censored_path = detector.censor(args.input, apply_blur=False, output_path=output_path, full_blur_rule=args.full_blur_rule)
img_combined = cv2.imread(censored_path)
img_boxes = img_combined.copy()
# Combine both blurred and boxed regions
for detection in detections:
box = detection["box"]
x, y, w, h = box[0], box[1], box[2], box[3]
label = detection["class"]
should_blur = detector.should_apply_blur(label) # Checking exception rules
if should_blur:
img_combined[y:y + h, x:x + w] = cv2.addWeighted(img_combined[y:y + h, x:x + w], 0, img_blur[y:y + h, x:x + w],1, 1)
else:
cv2.rectangle(img_boxes, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Save the images
cv2.imwrite(output_path, img_combined)
cv2.imwrite(blur_path, img_blur)
cv2.imwrite(detect_path, img_boxes)
print(f"Censored image saved at: {output_path}")
print(f"Blur image saved at: {blur_path}")
print(f"Boxes detection image saved at: {detect_path}")
# Check if the image is not empty before saving
if not os.path.exists(censored_path) or os.path.getsize(censored_path) == 0:
print("Error: Empty or non-existent image.")
else:
os.makedirs("Blur", exist_ok=True)
os.makedirs("Prosses", exist_ok=True)
os.makedirs("output", exist_ok=True)
# Save the image with both blur and boxes
cv2.imwrite(output_path, img_combined)
cv2.imwrite(blur_path, img_blur)
cv2.imwrite(detect_path, img_boxes) # Save the boxes detection image
print(f"Censored image saved at: {output_path}")
print(f"Blur image saved at: {blur_path}")
print(f"Boxes detection image saved at: {detect_path}")