-
Notifications
You must be signed in to change notification settings - Fork 21
/
models_mae_swin.py
585 lines (474 loc) · 23.9 KB
/
models_mae_swin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------
from functools import partial
import math
from turtle import pos
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.vision_transformer import Block
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from util.pos_embed import get_2d_sincos_pos_embed
from einops import rearrange
import torch.utils.checkpoint as cp
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
def __init__(self, dim, window_size, num_heads, posmlp_dim=32, qkv_bias=True, qk_scale=None):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.posmlp = nn.Sequential(
nn.Conv2d(2, posmlp_dim, 1),
nn.ReLU(inplace=True),
nn.Conv2d(posmlp_dim, num_heads, 1)
)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, pos_hw, mask=None):
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1)) # (B*nWindow, nHead, Wh*Ww, Wh*Ww)
# pos_hw (B, H, W, 2); during finetuning, B == 1 to save computation and storage
assert self.window_size[0] == self.window_size[1]
pos_windows = window_partition(pos_hw, self.window_size[0]) # B*nWindow, window_size, window_size, 2
pos_windows = pos_windows.permute(0, 3, 1, 2).flatten(2) # B*nW, 2, Wh*Ww
pos_input = pos_windows.unsqueeze(2) - pos_windows.unsqueeze(3) # B*nW, 2, Wh*Ww, Wh*Ww
# log-spaced coords
pos_input = torch.sign(pos_input) * torch.log(1. + pos_input.abs())
relative_position_bias = self.posmlp(pos_input) # B*nW, nH, WW, WW
if pos_hw.size(0) == 1: # for finetuning B == 1
nW, nH, WW, WW = relative_position_bias.size()
B = B_ // nW
relative_position_bias = relative_position_bias.unsqueeze(0).expand(B, -1, -1, -1, -1)
relative_position_bias = relative_position_bias.reshape(-1, nH, WW, WW)
attn = attn + relative_position_bias
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
return x
class PatchMerge(nn.Module):
def __init__(self, patch_size=2, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
patch_size = to_2tuple(patch_size)
self.patch_size = patch_size
self.in_chans = in_chans
self.embed_dim = embed_dim
self.norm = norm_layer(in_chans)
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x, pos_hw): # pos_hw are absolute positions of h and w
N, L, C = x.shape
_, H, W, _ = pos_hw.shape
assert L == H * W
x = self.norm(x)
x = x.permute(0, 2, 1).reshape(N, C, H, W)
# FIXME look at relaxing size constraints
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
H, W = H // self.patch_size[0], W // self.patch_size[1]
assert self.patch_size[0] == 2
if self.patch_size[0] == 2:
# shrink position values and scales
pos_hw = pos_hw[:, 0::2, 0::2, :] / 2.
return x, (H, W), pos_hw
class SwinBlock(nn.Module):
def __init__(self, dim, input_resolution, num_heads, window_size=8, shift_size=0,
mlp_ratio=4., qkv_bias=True, qk_scale=None, posmlp_dim=32,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, downsample=None,
with_cp=False):
super().__init__()
self.with_cp = with_cp
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale, posmlp_dim=posmlp_dim)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1))
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) # pay attention
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
self.attn_mask = attn_mask
self.downsample = downsample
def forward(self, x, pos_hw): # pos_hw (B, H, W, 2)
def _inner_forward(x, pos_hw):
#H, W = self.input_resolution
H, W = pos_hw.size(1), pos_hw.size(2)
if self.downsample:
x, (H, W), pos_hw = self.downsample(x, pos_hw)
B, L, C = x.shape
assert L == H * W, "input dimension wrong"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
pos_hw = torch.roll(pos_hw, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_x = x
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
if self.attn_mask is not None:
self.attn_mask = self.attn_mask.to(x.device)
attn_windows = self.attn(x_windows, pos_hw, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
pos_hw = torch.roll(pos_hw, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
x = x.view(B, H * W, C)
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x, pos_hw
if self.with_cp and x.requires_grad:
x, pos_hw = cp.checkpoint(_inner_forward, x, pos_hw)
else:
x, pos_hw = _inner_forward(x, pos_hw)
return x, pos_hw
class PatchEmbed(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = norm_layer(embed_dim)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
x = self.norm(x)
return x
class MaskedAutoencoderSwin(nn.Module):
""" Masked Autoencoder with Swin backbone
"""
def __init__(self, img_size=256, patch_size=4, in_chans=3, stride=16,
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
mlp_ratio=4, window_size=8, # 16 for finetune
posmlp_dim=32,
decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16,
norm_layer=nn.LayerNorm, norm_pix_loss=False, vis_mask_ratio=0.):
super().__init__()
self.embed_dim = embed_dim
self.stride = stride
self.kernel_stride = stride // patch_size
self.vis_mask_ratio = vis_mask_ratio
if vis_mask_ratio > 0:
self.vis_mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
print('vis_mask_token is learnable')
# --------------------------------------------------------------------------
# MAE encoder specifics
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim, norm_layer)
patches_resolution = self.patch_embed.patches_resolution
self.embed_h = self.embed_w = int(self.patch_embed.num_patches ** 0.5)
self.patches_resolution = self.patch_embed.patches_resolution
self.num_layers = len(depths)
pos_h = torch.arange(0, self.embed_h)[None, None, :, None].repeat(1, 1, 1, self.embed_w).float()
pos_w = torch.arange(0, self.embed_w)[None, None, None, :].repeat(1, 1, self.embed_h, 1).float()
self.pos_hw = torch.cat((pos_h, pos_w), dim=1) #(1, 2, H, W)
# self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim), requires_grad=False) # fixed sin-cos embedding
self.kernel = torch.ones(embed_dim, 1, 2, 2)
self.blocks = nn.ModuleList()
for i_layer in range(self.num_layers):
for dep in range(depths[i_layer]):
downsample_flag = (i_layer > 0) and (dep == 0)
# add = 1 if i_layer < self.num_layers - 1 else 0 # align with downsample's patch_size
add = 1
layer = SwinBlock(dim=embed_dim*(2**i_layer),
input_resolution=(
patches_resolution[0] // (2**(i_layer+add)),
patches_resolution[1] // (2**(i_layer+add))
),
num_heads=num_heads[i_layer],
window_size=window_size,
shift_size=0 if (dep % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio, qkv_bias=True, qk_scale=None,
posmlp_dim=posmlp_dim,
drop_path=0.,
downsample=PatchMerge(
patch_size=2, # if i_layer < self.num_layers - 1 else 1,
in_chans=embed_dim*(2**(i_layer - 1)),
embed_dim=embed_dim*(2**i_layer),
norm_layer=norm_layer
) if downsample_flag else None
)
self.blocks.append(layer)
encoder_out_dim = embed_dim*(2**(self.num_layers-1))
self.norm = norm_layer(encoder_out_dim)
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# MAE decoder specifics
self.decoder_embed_dim = decoder_embed_dim
self.decoder_embed = nn.Linear(encoder_out_dim, 4 * decoder_embed_dim, bias=True)
self.decoder_expand = nn.PixelShuffle(2)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.decoder_num_patches = (img_size // stride) ** 2
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, self.decoder_num_patches, decoder_embed_dim), requires_grad=False)
self.decoder_blocks = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer)
for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
self.decoder_pred = nn.Linear(decoder_embed_dim, stride**2 * in_chans, bias=True) # decoder to patch
# --------------------------------------------------------------------------
self.norm_pix_loss = norm_pix_loss
self.initialize_weights()
def initialize_weights(self):
# initialization
# initialize (and freeze) pos_embed by sin-cos embedding
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.decoder_num_patches**.5), cls_token=False)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.mask_token, std=.02)
if hasattr(self, 'vis_mask_token'):
torch.nn.init.normal_(self.vis_mask_token, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def unpatchify(self, x, stride=16):
"""
x: (N, L, patch_size**2 *3)
imgs: (N, 3, H, W)
"""
p = stride
h = w = int(x.shape[1]**.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, 3))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p))
return imgs
def patchify(self, imgs, stride=16):
"""
imgs: (N, 3, H, W)
x: (N, L, patch_size**2 *3)
"""
# p = self.patch_embed.patch_size[0]
p = stride
assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0
h = w = imgs.shape[2] // p
x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
x = torch.einsum('nchpwq->nhwpqc', x)
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3))
return x
def forward_encoder(self, x, mask):
N = x.size(0)
# embed patches
x = self.patch_embed(x)
# secondary mask
L = mask.size(1)
vis_cnt = L - len(mask[0].nonzero())
vis_final_cnt = int(vis_cnt * (1. - self.vis_mask_ratio)) # final visible
noise = torch.rand(N, L, device=x.device)
mask_noise = mask.float() + noise
ids_shuffle = torch.argsort(mask_noise, dim=1)
ids_restore = torch.argsort(ids_shuffle, dim=1)
new_mask = torch.ones([N, L], device=x.device)
new_mask[:, :vis_final_cnt] = 0
new_mask = torch.gather(new_mask, dim=1, index=ids_restore).to(torch.bool)
# and amplify mask (N, L) and new_mask (N, L), new_mask has more 1 (mask)
M = int(L ** 0.5)
scale = self.embed_h // M
mask = mask.reshape(N, M, M)
mask = mask.repeat_interleave(scale, 1).repeat_interleave(scale, 2).unsqueeze(1).contiguous() # (N, 1, H, W)
new_mask = new_mask.reshape(N, M, M)
new_mask = new_mask.repeat_interleave(scale, 1).repeat_interleave(scale, 2).unsqueeze(1).contiguous()
# add vis_mask_token
if hasattr(self, 'vis_mask_token'):
token_mask = (~mask).int() - (~new_mask).int()
vis_mask_token = self.patch_embed.norm(self.vis_mask_token)
vis_mask_token = vis_mask_token.expand(N, self.patch_embed.num_patches, -1)
vis_mask_token = vis_mask_token.reshape(N, self.embed_h, self.embed_w, self.embed_dim).permute(0, 3, 1, 2) # N C H W
vis_mask_token = vis_mask_token * token_mask
else:
vis_mask_token = 0
# prepare variables
K = self.kernel_stride
H, W = self.embed_h, self.embed_w
self.kernel = self.kernel.to(x.device)
# x to image shape (N, L, D) -> (N, C, H//2, W//2)
x = x.reshape(N, self.embed_h, self.embed_w, self.embed_dim).permute(0, 3, 1, 2) # N C H W
x = x * (~new_mask) + vis_mask_token
x = rearrange(x, 'b c (h p1) (w p2) -> (b h w) c p1 p2', p1=K*2, p2=K*2)
x = F.conv2d(x, self.kernel, dilation=K, groups=self.embed_dim)
x = rearrange(x, '(b h w) c p1 p2 -> b c (h p1) (w p2)', h=H//(K*2), w=W//(K*2))
# we have pos_hw (N, H, W, 2) table to go through the network
pos_hw = self.pos_hw.repeat(N, 1, 1, 1).to(x.device)
pos_hw = pos_hw * (~mask)
pos_hw = rearrange(pos_hw, 'b c (h p1) (w p2) -> (b h w) c p1 p2', p1=K*2, p2=K*2)
pos_hw = F.conv2d(pos_hw, self.kernel[:2], dilation=K, groups=2)
pos_hw = rearrange(pos_hw, '(b h w) c p1 p2 -> b c (h p1) (w p2)', h=H//(K*2), w=W//(K*2))
pos_hw = pos_hw.permute(0, 2, 3, 1) # (N, H//2, W//2, 2)
x = x.permute(0, 2, 3, 1).reshape(N, -1, self.embed_dim)
# apply Transformer blocks
for blk in self.blocks:
x, pos_hw = blk(x, pos_hw)
x = self.norm(x)
return x
def forward_decoder(self, x, mask):
# embed tokens
x = self.decoder_embed(x)
x_vis = x
N, L, nD = x_vis.shape
M = int(L**0.5)
x_vis = self.decoder_expand(x_vis.permute(0, 2, 1).reshape(-1, nD, M, M)).flatten(2)
x_vis = x_vis.permute(0, 2, 1)
_, _, D = x_vis.shape
# append mask tokens to sequence
expand_pos_embed = self.decoder_pos_embed.expand(N, -1, -1)
pos_vis = expand_pos_embed[~mask].reshape(N, -1, D)
pos_mask = expand_pos_embed[mask].reshape(N, -1, D)
x = torch.cat([x_vis + pos_vis, self.mask_token + pos_mask], dim=1)
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x)
x = self.decoder_norm(x)
# predictor projection
x = self.decoder_pred(x)
return x, pos_mask.shape[1]
def forward_loss(self, imgs, pred, mask):
"""
imgs: [N, 3, H, W]
pred: [N, mask, p*p*3]
mask: [N, L], 0 is keep, 1 is remove,
"""
target = self.patchify(imgs, self.stride)
N, _, D = target.shape
target = target[mask].reshape(N, -1, D)
if self.norm_pix_loss:
mean = target.mean(dim=-1, keepdim=True)
var = target.var(dim=-1, keepdim=True)
target = (target - mean) / (var + 1.e-6)**.5 # (N, L, p*p*3)
loss = (pred - target) ** 2
loss = loss.mean()
return loss
def forward(self, imgs, mask):
latent = self.forward_encoder(imgs, mask) # returned mask may change
pred, mask_num = self.forward_decoder(latent, mask) # [N, L, p*p*3]
loss = self.forward_loss(imgs, pred[:, -mask_num:], mask)
return loss, pred, mask
def mae_swin_tiny_256_dec512d2b(**kwargs):
model = MaskedAutoencoderSwin(
img_size=256, patch_size=4, in_chans=3, stride=16,
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
mlp_ratio=4, window_size=8, # 16 for finetune
decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mae_swin_large_256_dec512d2b(**kwargs):
model = MaskedAutoencoderSwin(
img_size=256, patch_size=4, in_chans=3, stride=16,
embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48],
mlp_ratio=4, window_size=8, # 16 for finetune
decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mae_swin_large_256_dec512d8b64pmd(**kwargs):
model = MaskedAutoencoderSwin(
img_size=256, patch_size=4, in_chans=3, stride=16,
embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48],
posmlp_dim=64, mlp_ratio=4, window_size=8, # 16 for finetune
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
# set recommended archs
mae_swin_tiny_256 = mae_swin_tiny_256_dec512d2b # decoder: 512 dim, 2 blocks
mae_swin_large_256 = mae_swin_large_256_dec512d8b64pmd