You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Analyzing anchors... anchors/target = 2.52, Best Possible Recall (BPR) = 1.0000
Image sizes 640 train, 640 test
Using 2 dataloader workers
Logging results to runs/exp18_asl_example
Starting training for 3 epochs...
Epoch gpu_mem GIoU obj cls total targets img_size
0% 0/299 [00:00<?, ?it/s]Traceback (most recent call last):
File "train.py", line 456, in
train(hyp, opt, device, tb_writer)
File "train.py", line 268, in train
loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
File "/content/drive/My Drive/ASLR/yolov5/utils/general.py", line 525, in compute_loss
lbox *= h['gioU'] * s
KeyError: 'gioU'
0% 0/299 [00:02<?, ?it/s]
The text was updated successfully, but these errors were encountered:
Using CUDA device0 _CudaDeviceProperties(name='Tesla T4', total_memory=15109MB)
Namespace(adam=False, batch_size=64, bucket='', cache_images=False, cfg='models/yolov5s.yaml', data='asl.yaml', device='', epochs=3, evolve=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], local_rank=-1, logdir='runs/', multi_scale=False, name='asl_example', noautoanchor=False, nosave=False, notest=False, rect=False, resume=False, single_cls=False, sync_bn=False, total_batch_size=64, weights='yolov5s.pt', workers=8, world_size=1)
Start Tensorboard with "tensorboard --logdir runs/", view at http://localhost:6006/
2021-02-19 17:18:24.635404: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.1
Hyperparameters {'lr0': 0.01, 'lrf': 0.2, 'momentum': 0.937, 'weight_decay': 0.0005, 'warmup_epochs': 3.0, 'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1, 'box': 0.05, 'cls': 0.5, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, 'degrees': 0.0, 'translate': 0.1, 'scale': 0.5, 'shear': 0.0, 'perspective': 0.0, 'flipud': 0.0, 'fliplr': 0.5, 'mosaic': 1.0, 'mixup': 0.0}
Overriding model.yaml nc=80 with nc=28
0 -1 1 3520 models.common.Focus [3, 32, 3]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 19904 models.common.BottleneckCSP [64, 64, 1]
3 -1 1 73984 models.common.Conv [64, 128, 3, 2]
4 -1 1 161152 models.common.BottleneckCSP [128, 128, 3]
5 -1 1 295424 models.common.Conv [128, 256, 3, 2]
6 -1 1 641792 models.common.BottleneckCSP [256, 256, 3]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]]
9 -1 1 1248768 models.common.BottleneckCSP [512, 512, 1, False]
10 -1 1 131584 models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 378624 models.common.BottleneckCSP [512, 256, 1, False]
14 -1 1 33024 models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 95104 models.common.BottleneckCSP [256, 128, 1, False]
18 -1 1 147712 models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 313088 models.common.BottleneckCSP [256, 256, 1, False]
21 -1 1 590336 models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 1248768 models.common.BottleneckCSP [512, 512, 1, False]
24 [17, 20, 23] 1 89001 models.yolo.Detect [28, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Model Summary: 191 layers, 7.32791e+06 parameters, 7.32791e+06 gradients, 17.0 GFLOPS
Transferred 362/370 items from yolov5s.pt
Optimizer groups: 62 .bias, 70 conv.weight, 59 other
Scanning labels asl_yolo/labels/train.cache (19113 found, 0 missing, 9 empty, 0 duplicate, for 19122 images): 19122it [00:01, 15994.32it/s]
Scanning labels asl_yolo/labels/validation.cache (4779 found, 0 missing, 9 empty, 0 duplicate, for 4788 images): 4788it [00:00, 7887.93it/s]
NumExpr defaulting to 2 threads.
Analyzing anchors... anchors/target = 2.52, Best Possible Recall (BPR) = 1.0000
Image sizes 640 train, 640 test
Using 2 dataloader workers
Logging results to runs/exp18_asl_example
Starting training for 3 epochs...
0% 0/299 [00:00<?, ?it/s]Traceback (most recent call last):
File "train.py", line 456, in
train(hyp, opt, device, tb_writer)
File "train.py", line 268, in train
loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
File "/content/drive/My Drive/ASLR/yolov5/utils/general.py", line 525, in compute_loss
lbox *= h['gioU'] * s
KeyError: 'gioU'
0% 0/299 [00:02<?, ?it/s]
The text was updated successfully, but these errors were encountered: