forked from biopython/biopython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_NNGene.py
636 lines (510 loc) · 22.7 KB
/
test_NNGene.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
#!/usr/bin/env python
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Test the different representations of Genes.
This exercises the Motif, Schema and Signature methods of representing
genes, as well as generic Pattern methods.
"""
# standard library
import os
import unittest
# Biopython
from Bio import SeqIO
from Bio.Seq import Seq
from Bio.Alphabet import IUPAC
# stuff we are testing
from Bio.NeuralNetwork.Gene import Schema
from Bio.NeuralNetwork.Gene import Motif
from Bio.NeuralNetwork.Gene import Signature
from Bio.NeuralNetwork.Gene import Pattern
VERBOSE = 0
# --- Tests for Pattern
class PatternIOTest(unittest.TestCase):
"""Tests for reading and writing patterns to a file.
"""
def setUp(self):
self.alphabet = IUPAC.ambiguous_dna
self.test_file = os.path.join("NeuralNetwork", "patternio.txt")
#Remove any existing copy of the output file,
if os.path.isfile(self.test_file):
os.remove(self.test_file)
self.pattern_io = Pattern.PatternIO(self.alphabet)
def tearDown(self):
#Clean up by removing our output file,
if os.path.isfile(self.test_file):
os.remove(self.test_file)
def test_motif(self):
"""Reading and writing motifs to a file
"""
# write to a file
motifs = ["GAC", "AAA", "TTT", "GGG"]
output_handle = open(self.test_file, "w")
self.pattern_io.write(motifs, output_handle)
output_handle.close()
# read 'em back
input_handle = open(self.test_file, "r")
read_motifs = self.pattern_io.read(input_handle)
input_handle.close()
assert read_motifs == motifs, \
"Failed to get back expected motifs %s, got %s" \
% (motifs, read_motifs)
# write seqs
seq_motifs = []
for motif in motifs:
seq_motifs.append(Seq(motif, self.alphabet))
output_handle = open(self.test_file, "w")
self.pattern_io.write_seq(seq_motifs, output_handle)
output_handle.close()
# read the seqs back
input_handle = open(self.test_file, "r")
read_motifs = self.pattern_io.read(input_handle)
input_handle.close()
assert read_motifs == motifs, \
"Failed to get back expected motifs %s from seqs, got %s" \
% (motifs, read_motifs)
def test_schema(self):
"""Reading and writing schemas to a file.
"""
schemas = ["GTR", "GAC"]
# write out the schemas
output_handle = open(self.test_file, "w")
self.pattern_io.write(schemas, output_handle)
output_handle.close()
# read back the schemas
input_handle = open(self.test_file, "r")
read_schemas = self.pattern_io.read(input_handle)
input_handle.close()
assert schemas == read_schemas, \
"Read incorrect schemas %s, expected %s." \
% (read_schemas, schemas)
# --- make sure inappropriate alphabets are reported
schemas = ["GTR", "G*C"] # '*' not in the unambigous alphabet
output_handle = open(self.test_file, "w")
self.pattern_io.write(schemas, output_handle)
output_handle.close()
input_handle = open(self.test_file, "r")
try:
read_schemas = self.pattern_io.read(input_handle)
raise AssertionError("Did not report error on bad alphabet.")
except ValueError:
pass # expected behavior
except:
raise AssertionError("Got unexpected error while reading.")
input_handle.close()
def test_signature(self):
"""Reading and writing signatures to a file.
"""
signatures = [("GAC", "GAC"), ("AAA", "TTT")]
output_handle = open(self.test_file, "w")
self.pattern_io.write(signatures, output_handle)
output_handle.close()
input_handle = open(self.test_file, "r")
read_sigs = self.pattern_io.read(input_handle)
input_handle.close()
assert read_sigs == signatures, \
"Got back unexpected signatures %s, wanted %s" \
% (read_sigs, signatures)
class PatternRepositoryTest(unittest.TestCase):
"""Tests for retrieving info from a repository of patterns.
"""
def setUp(self):
self.motifs = {"GATC" : 30,
"GGGG" : 10,
"GTAG" : 0,
"AAAA" : -10,
"ATAT" : -20}
self.repository = Pattern.PatternRepository(self.motifs)
def test_get_all(self):
"""Retrieve all patterns from a repository.
"""
all_motifs = self.repository.get_all()
assert all_motifs == ["GATC", "GGGG", "GTAG", "AAAA", "ATAT"], \
"Unexpected motifs returned %s" % all_motifs
def test_get_random(self):
"""Retrieve random patterns from the repository.
"""
for num_patterns in range(5):
patterns = self.repository.get_random(num_patterns)
assert len(patterns) == num_patterns, \
"Got unexpected number of patterns %s, expected %s" \
% (len(patterns), num_patterns)
for pattern in patterns:
assert pattern in self.motifs.keys(), \
"Got unexpected pattern %s" % pattern
def test_get_top_percentage(self):
"""Retrieve the top percentge of patterns from the repository.
"""
for num_patterns, percentage in ((1, 0.2), (2, .4), (5, 1.0)):
patterns = self.repository.get_top_percentage(percentage)
assert len(patterns) == num_patterns, \
"Got unexpected number of patterns %s, expected %s" \
% (len(patterns), num_patterns)
for pattern in patterns:
assert pattern in self.motifs.keys(), \
"Got unexpected pattern %s" % pattern
def test_get_top(self):
"""Retrieve a certain number of the top patterns.
"""
for num_patterns in range(5):
patterns = self.repository.get_top(num_patterns)
assert len(patterns) == num_patterns, \
"Got unexpected number of patterns %s, expected %s" \
% (len(patterns), num_patterns)
for pattern in patterns:
assert pattern in self.motifs.keys(), \
"Got unexpected pattern %s" % pattern
def test_get_differing(self):
"""Retrieve patterns from both sides of the list (top and bottom).
"""
patterns = self.repository.get_differing(2, 2)
assert patterns == ["GATC", "GGGG", "AAAA", "ATAT"], \
"Got unexpected patterns %s" % patterns
def test_remove_polyA(self):
"""Test the ability to remove A rich patterns from the repository.
"""
patterns = self.repository.get_all()
assert len(patterns) == 5, "Unexpected starting: %s" % patterns
self.repository.remove_polyA()
patterns = self.repository.get_all()
assert len(patterns) == 3, "Unexpected ending: %s" % patterns
assert patterns == ["GATC", "GGGG", "GTAG"], \
"Unexpected patterns: %s" % patterns
def test_count(self):
"""Retrieve counts for particular patterns in the repository.
"""
num_times = self.repository.count("GGGG")
assert num_times == 10, \
"Did not count item in the respository: %s" % num_times
num_times = self.repository.count("NOT_IN_THERE")
assert num_times == 0, \
"Counted items not in repository: %s" % num_times
# --- Tests for motifs
class MotifFinderTest(unittest.TestCase):
"""Tests for finding motifs from sequences.
"""
def setUp(self):
test_file = os.path.join('NeuralNetwork', 'enolase.fasta')
diff_file = os.path.join('NeuralNetwork', 'repeat.fasta')
self.test_records = []
self.diff_records = []
# load the records
for file, records in ((test_file, self.test_records),
(diff_file, self.diff_records)):
handle = open(file, 'r')
iterator = SeqIO.parse(handle, "fasta",
alphabet=IUPAC.unambiguous_dna)
while 1:
try:
seq_record = iterator.next()
except StopIteration:
break
if seq_record is None:
break
records.append(seq_record)
handle.close()
self.motif_finder = Motif.MotifFinder()
def test_find(self):
"""Find all motifs in a set of sequences.
"""
motif_repository = self.motif_finder.find(self.test_records, 8)
top_motif = motif_repository.get_top(1)
assert top_motif[0] == 'TTGGAAAG', \
"Got unexpected motif %s" % top_motif[0]
def test_find_differences(self):
"""Find the difference in motif counts between two sets of sequences.
"""
motif_repository = \
self.motif_finder.find_differences(self.test_records,
self.diff_records, 8)
top, bottom = motif_repository.get_differing(1, 1)
assert top == "TTGGAAAG", "Got unexpected top motif %s" % top
assert bottom == "AATGGCAT", "Got unexpected bottom motif %s" % bottom
class MotifCoderTest(unittest.TestCase):
"""Test the ability to encode sequences as a set of motifs.
"""
def setUp(self):
motifs = ["GAG", "GAT", "GCC", "ATA"]
self.match_strings = (("GATCGCC", [0.0, 1.0, 1.0, 0.0]),
("GATGATCGAGCC", [.5, 1.0, .5, 0.0]))
self.coder = Motif.MotifCoder(motifs)
def test_representation(self):
"""Convert a sequence into its motif representation.
"""
for match_string, expected in self.match_strings:
seq_to_code = Seq(match_string, IUPAC.unambiguous_dna)
matches = self.coder.representation(seq_to_code)
assert matches == expected, \
"Did not match representation, expected %s, got %s" \
% (expected, matches)
# --- Tests for schemas
class SchemaTest(unittest.TestCase):
"""Matching ambiguous motifs with multiple ambiguity characters.
"""
def setUp(self):
ambiguity_chars = {"G" : "G",
"A" : "A",
"T" : "T",
"C" : "C",
"R" : "AG",
"*" : "AGTC"}
self.motif_coder = Schema.Schema(ambiguity_chars)
self.match_string = "GATAG"
self.match_info = [("GA", ["GA"]),
("GATAG", ["GATAG"]),
("GA*AG", ["GATAG"]),
("GATRG", ["GATAG"]),
("*A", ["GA", "TA"])]
def test_find_matches(self):
"""Find all matches in a sequence.
"""
for motif, expected in self.match_info:
found_matches = self.motif_coder.find_matches(motif,
self.match_string)
assert found_matches == expected, "Expected %s, got %s" \
% (expected, found_matches)
def test_num_matches(self):
"""Find how many matches are present in a sequence.
"""
for motif, expected in self.match_info:
num_matches = self.motif_coder.num_matches(motif,
self.match_string)
assert num_matches == len(expected), \
"Expected %s, got %s" % (num_matches, len(expected))
def test_find_ambiguous(self):
"""Find the positions of ambiguous items in a sequence.
"""
ambig_info = (("GATC", []),
("G***", [1, 2, 3]),
("GART", [2]),
("*R*R", [0, 1, 2, 3]))
for motif, expected in ambig_info:
found_positions = self.motif_coder.find_ambiguous(motif)
assert found_positions == expected, \
"Expected %s, got %s for %s" % (expected, found_positions,
motif)
def test_num_ambiguous(self):
"""Find the number of ambiguous items in a sequence.
"""
ambig_info = (("GATC", 0),
("G***", 3),
("GART", 1),
("*R*R", 4))
for motif, expected in ambig_info:
found_num = self.motif_coder.num_ambiguous(motif)
assert found_num == expected, \
"Expected %s, got %s for %s" % (expected, found_num, motif)
def test_motif_cache(self):
"""Make sure motif compiled regular expressions are cached properly.
"""
test_motif = "GATC"
self.motif_coder.find_matches(test_motif, "GATCGATC")
self.assertTrue(test_motif in self.motif_coder._motif_cache,
"Did not find motif cached properly.")
# make sure we don't bomb out if we use the same motif twice
self.motif_coder.find_matches(test_motif, "GATCGATC")
def test_all_unambiguous(self):
"""Return all unambiguous characters that can be in a motif.
"""
found_unambig = self.motif_coder.all_unambiguous()
expected = ["A", "C", "G", "T"]
assert found_unambig == expected, \
"Got %s, expected %s" % (found_unambig, expected)
class SchemaFinderTest(unittest.TestCase):
"""Test finding schemas from a set of sequences.
"""
def setUp(self):
test_file = os.path.join('NeuralNetwork', 'enolase.fasta')
diff_file = os.path.join('NeuralNetwork', 'repeat.fasta')
self.test_records = []
self.diff_records = []
# load the records
for file, records in ((test_file, self.test_records),
(diff_file, self.diff_records)):
handle = open(file, 'r')
records.extend(SeqIO.parse(handle, "fasta",
alphabet=IUPAC.unambiguous_dna))
handle.close()
self.num_schemas = 2
schema_ga = Schema.GeneticAlgorithmFinder()
schema_ga.min_generations = 1
self.finder = Schema.SchemaFinder(num_schemas = self.num_schemas,
schema_finder = schema_ga)
def test_find(self):
"""Find schemas from sequence inputs.
"""
# this test takes too long
if VERBOSE:
repository = self.finder.find(self.test_records + self.diff_records)
schemas = repository.get_all()
assert len(schemas) >= self.num_schemas, "Got too few schemas."
def test_find_differences(self):
"""Find schemas that differentiate between two sets of sequences.
"""
# this test takes too long
if VERBOSE:
repository = self.finder.find_differences(self.test_records,
self.diff_records)
schemas = repository.get_all()
assert len(schemas) >= self.num_schemas, "Got too few schemas."
class SchemaCoderTest(unittest.TestCase):
"""Test encoding sequences as a grouping of motifs.
"""
def setUp(self):
ambiguity_chars = {"G" : "G",
"A" : "A",
"T" : "T",
"C" : "C",
"R" : "AG",
"*" : "AGTC"}
motif_representation = Schema.Schema(ambiguity_chars)
motifs = ("GA", "GATAG", "GA*AG", "GATRG", "*A")
self.motif_coder = Schema.SchemaCoder(motifs,
motif_representation)
self.match_strings = [("GATAG", [.5, .5, .5, .5, 1.0]),
("GAGAGATA", [float(3) / float(4), 0,
float(1) / float(4), 0,
1])]
def test_representation(self):
"""Convert a string into a representation of motifs.
"""
for match_string, expected in self.match_strings:
match_seq = Seq(match_string, IUPAC.unambiguous_dna)
found_rep = self.motif_coder.representation(match_seq)
assert found_rep == expected, "Got %s, expected %s" % \
(found_rep, expected)
class SchemaMatchingTest(unittest.TestCase):
"""Matching schema to strings works correctly.
"""
def shortDescription(self):
return "%s:%s" % (self.__class__.__name__, self.__doc__)
def runTest(self):
match = Schema.matches_schema("GATC", "AAAAA")
assert match == 0, "Expected no match because of length differences"
match = Schema.matches_schema("GATC", "GAT*")
assert match == 1, "Expected match"
match = Schema.matches_schema("GATC", "GATC")
assert match == 1, "Expected match"
match = Schema.matches_schema("GATC", "C*TC")
assert match == 0, "Expected no match because of char mismatch."
match = Schema.matches_schema("G*TC", "*TTC")
assert match == 1, "Expected match because of ambiguity."
class SchemaFactoryTest(unittest.TestCase):
"""Test the SchemaFactory for generating Schemas.
"""
def __init__(self, method):
unittest.TestCase.__init__(self, method)
# a cached schema bank, so we don't have to load it multiple times
self.schema_bank = None
def setUp(self):
self.factory = Schema.SchemaFactory()
self.test_file = os.path.join(os.getcwd(), "NeuralNetwork", "enolase.fasta")
ambiguity_chars = {"G" : "G",
"A" : "A",
"T" : "T",
"C" : "C",
"R" : "AG",
"*" : "AGTC"}
self.schema = Schema.Schema(ambiguity_chars)
def test_easy_from_motifs(self):
"""Generating schema from a simple list of motifs.
"""
motifs = {"GATCGAA" : 20,
"GATCGAT" : 15,
"GATTGAC" : 25,
"TTTTTTT" : 10}
motif_bank = Pattern.PatternRepository(motifs)
schema_bank = self.factory.from_motifs(motif_bank, .5, 2)
if VERBOSE:
print "\nSchemas:"
for schema in schema_bank.get_all():
print "%s: %s" % (schema, schema_bank.count(schema))
def test_hard_from_motifs(self):
"""Generating schema from a real life set of motifs.
"""
schema_bank = self._load_schema_repository()
if VERBOSE:
print "\nSchemas:"
for schema in schema_bank.get_top(5):
print "%s: %s" % (schema, schema_bank.count(schema))
def _load_schema_repository(self):
"""Helper function to load a schema repository from a file.
This also caches a schema bank, to prevent having to do this
time consuming operation multiple times.
"""
# if we already have a cached repository, return it
if self.schema_bank is not None:
return self.schema_bank
# otherwise, we'll read in a new schema bank
# read in the all of the motif records
motif_handle = open(self.test_file, 'r')
seq_records = list(SeqIO.parse(motif_handle, "fasta",
alphabet=IUPAC.unambiguous_dna))
motif_handle.close()
# find motifs from the file
motif_finder = Motif.MotifFinder()
motif_size = 9
motif_bank = motif_finder.find(seq_records, motif_size)
schema_bank = self.factory.from_motifs(motif_bank, .1, 2)
# cache the repository
self.schema_bank = schema_bank
return schema_bank
def test_schema_representation(self):
"""Convert sequences into schema representations.
"""
# get a set of schemas we want to code the sequence in
schema_bank = self._load_schema_repository()
top_schemas = schema_bank.get_top(25)
schema_coder = Schema.SchemaCoder(top_schemas, self.schema)
# get the sequences one at a time, and encode them
fasta_handle = open(self.test_file, 'r')
for seq_record in SeqIO.parse(fasta_handle, "fasta",
alphabet=IUPAC.unambiguous_dna):
schema_values = schema_coder.representation(seq_record.seq)
if VERBOSE:
print "Schema values:", schema_values
fasta_handle.close()
# --- Tests for Signatures
class SignatureFinderTest(unittest.TestCase):
"""Test the ability to find signatures in a set of sequences.
"""
def setUp(self):
test_file = os.path.join('NeuralNetwork', 'enolase.fasta')
self.test_records = []
# load the records
handle = open(test_file, 'r')
self.test_records = list(SeqIO.parse(handle, "fasta",
alphabet=IUPAC.unambiguous_dna))
handle.close()
self.sig_finder = Signature.SignatureFinder()
def test_find(self):
"""Find signatures from sequence inputs.
"""
repository = self.sig_finder.find(self.test_records, 6, 9)
top_sig = repository.get_top(1)
assert top_sig[0] == ('TTGGAA', 'TGGAAA'), \
"Unexpected signature %s" % top_sig[0]
class SignatureCoderTest(unittest.TestCase):
"""Test the ability to encode sequences as a set of signatures.
"""
def setUp(self):
signatures = [("GAC", "GAC"), ("AAA", "TTT"), ("CAA", "TTG")]
self.coder = Signature.SignatureCoder(signatures, 9)
self.test_seqs = [("GACAAAGACTTT", [1.0, 1.0, 0.0]),
("CAAAGACGACTTTAAATTT", [0.5, 1.0, 0.0]),
("AAATTTAAAGACTTTGAC", [1.0 / 3.0, 1.0, 0.0]),
("GACGAC", [1.0, 0.0, 0.0]),
("GACAAAAAAAAAGAC", [1.0, 0.0, 0.0]),
("GACAAAAAAAAAAGAC", [0.0, 0.0, 0.0])]
def test_representation(self):
"""Convert a sequence into its signature representation.
"""
for seq_string, expected in self.test_seqs:
test_seq = Seq(seq_string, IUPAC.unambiguous_dna)
predicted = self.coder.representation(test_seq)
assert predicted == expected, \
"Non-expected representation %s for %s, wanted %s" \
% (predicted, seq_string, expected)
if __name__ == "__main__":
runner = unittest.TextTestRunner(verbosity = 2)
unittest.main(testRunner=runner)