This repository has been archived by the owner on Sep 2, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 171
/
train_multi_task.py
244 lines (207 loc) · 9.07 KB
/
train_multi_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import sys
import torch
import click
import json
import datetime
from timeit import default_timer as timer
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils import data
import torchvision
import types
from tqdm import tqdm
from tensorboardX import SummaryWriter
import losses
import datasets
import metrics
import model_selector
from min_norm_solvers import MinNormSolver, gradient_normalizers
NUM_EPOCHS = 100
@click.command()
@click.option('--param_file', default='params.json', help='JSON parameters file')
def train_multi_task(param_file):
with open('configs.json') as config_params:
configs = json.load(config_params)
with open(param_file) as json_params:
params = json.load(json_params)
exp_identifier = []
for (key, val) in params.items():
if 'tasks' in key:
continue
exp_identifier+= ['{}={}'.format(key,val)]
exp_identifier = '|'.join(exp_identifier)
params['exp_id'] = exp_identifier
writer = SummaryWriter(log_dir='runs/{}_{}'.format(params['exp_id'], datetime.datetime.now().strftime("%I:%M%p on %B %d, %Y")))
train_loader, train_dst, val_loader, val_dst = datasets.get_dataset(params, configs)
loss_fn = losses.get_loss(params)
metric = metrics.get_metrics(params)
model = model_selector.get_model(params)
model_params = []
for m in model:
model_params += model[m].parameters()
if 'RMSprop' in params['optimizer']:
optimizer = torch.optim.RMSprop(model_params, lr=params['lr'])
elif 'Adam' in params['optimizer']:
optimizer = torch.optim.Adam(model_params, lr=params['lr'])
elif 'SGD' in params['optimizer']:
optimizer = torch.optim.SGD(model_params, lr=params['lr'], momentum=0.9)
tasks = params['tasks']
all_tasks = configs[params['dataset']]['all_tasks']
print('Starting training with parameters \n \t{} \n'.format(str(params)))
if 'mgda' in params['algorithm']:
approximate_norm_solution = params['use_approximation']
if approximate_norm_solution:
print('Using approximate min-norm solver')
else:
print('Using full solver')
n_iter = 0
loss_init = {}
for epoch in tqdm(range(NUM_EPOCHS)):
start = timer()
print('Epoch {} Started'.format(epoch))
if (epoch+1) % 10 == 0:
# Every 50 epoch, half the LR
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.85
print('Half the learning rate{}'.format(n_iter))
for m in model:
model[m].train()
for batch in train_loader:
n_iter += 1
# First member is always images
images = batch[0]
images = Variable(images.cuda())
labels = {}
# Read all targets of all tasks
for i, t in enumerate(all_tasks):
if t not in tasks:
continue
labels[t] = batch[i+1]
labels[t] = Variable(labels[t].cuda())
# Scaling the loss functions based on the algorithm choice
loss_data = {}
grads = {}
scale = {}
mask = None
masks = {}
if 'mgda' in params['algorithm']:
# Will use our MGDA_UB if approximate_norm_solution is True. Otherwise, will use MGDA
if approximate_norm_solution:
optimizer.zero_grad()
# First compute representations (z)
images_volatile = Variable(images.data, volatile=True)
rep, mask = model['rep'](images_volatile, mask)
# As an approximate solution we only need gradients for input
if isinstance(rep, list):
# This is a hack to handle psp-net
rep = rep[0]
rep_variable = [Variable(rep.data.clone(), requires_grad=True)]
list_rep = True
else:
rep_variable = Variable(rep.data.clone(), requires_grad=True)
list_rep = False
# Compute gradients of each loss function wrt z
for t in tasks:
optimizer.zero_grad()
out_t, masks[t] = model[t](rep_variable, None)
loss = loss_fn[t](out_t, labels[t])
loss_data[t] = loss.data[0]
loss.backward()
grads[t] = []
if list_rep:
grads[t].append(Variable(rep_variable[0].grad.data.clone(), requires_grad=False))
rep_variable[0].grad.data.zero_()
else:
grads[t].append(Variable(rep_variable.grad.data.clone(), requires_grad=False))
rep_variable.grad.data.zero_()
else:
# This is MGDA
for t in tasks:
# Comptue gradients of each loss function wrt parameters
optimizer.zero_grad()
rep, mask = model['rep'](images, mask)
out_t, masks[t] = model[t](rep, None)
loss = loss_fn[t](out_t, labels[t])
loss_data[t] = loss.data[0]
loss.backward()
grads[t] = []
for param in model['rep'].parameters():
if param.grad is not None:
grads[t].append(Variable(param.grad.data.clone(), requires_grad=False))
# Normalize all gradients, this is optional and not included in the paper.
gn = gradient_normalizers(grads, loss_data, params['normalization_type'])
for t in tasks:
for gr_i in range(len(grads[t])):
grads[t][gr_i] = grads[t][gr_i] / gn[t]
# Frank-Wolfe iteration to compute scales.
sol, min_norm = MinNormSolver.find_min_norm_element([grads[t] for t in tasks])
for i, t in enumerate(tasks):
scale[t] = float(sol[i])
else:
for t in tasks:
masks[t] = None
scale[t] = float(params['scales'][t])
# Scaled back-propagation
optimizer.zero_grad()
rep, _ = model['rep'](images, mask)
for i, t in enumerate(tasks):
out_t, _ = model[t](rep, masks[t])
loss_t = loss_fn[t](out_t, labels[t])
loss_data[t] = loss_t.data[0]
if i > 0:
loss = loss + scale[t]*loss_t
else:
loss = scale[t]*loss_t
loss.backward()
optimizer.step()
writer.add_scalar('training_loss', loss.data[0], n_iter)
for t in tasks:
writer.add_scalar('training_loss_{}'.format(t), loss_data[t], n_iter)
for m in model:
model[m].eval()
tot_loss = {}
tot_loss['all'] = 0.0
met = {}
for t in tasks:
tot_loss[t] = 0.0
met[t] = 0.0
num_val_batches = 0
for batch_val in val_loader:
val_images = Variable(batch_val[0].cuda(), volatile=True)
labels_val = {}
for i, t in enumerate(all_tasks):
if t not in tasks:
continue
labels_val[t] = batch_val[i+1]
labels_val[t] = Variable(labels_val[t].cuda(), volatile=True)
val_rep, _ = model['rep'](val_images, None)
for t in tasks:
out_t_val, _ = model[t](val_rep, None)
loss_t = loss_fn[t](out_t_val, labels_val[t])
tot_loss['all'] += loss_t.data[0]
tot_loss[t] += loss_t.data[0]
metric[t].update(out_t_val, labels_val[t])
num_val_batches+=1
for t in tasks:
writer.add_scalar('validation_loss_{}'.format(t), tot_loss[t]/num_val_batches, n_iter)
metric_results = metric[t].get_result()
for metric_key in metric_results:
writer.add_scalar('metric_{}_{}'.format(metric_key, t), metric_results[metric_key], n_iter)
metric[t].reset()
writer.add_scalar('validation_loss', tot_loss['all']/len(val_dst), n_iter)
if epoch % 3 == 0:
# Save after every 3 epoch
state = {'epoch': epoch+1,
'model_rep': model['rep'].state_dict(),
'optimizer_state' : optimizer.state_dict()}
for t in tasks:
key_name = 'model_{}'.format(t)
state[key_name] = model[t].state_dict()
torch.save(state, "saved_models/{}_{}_model.pkl".format(params['exp_id'], epoch+1))
end = timer()
print('Epoch ended in {}s'.format(end - start))
if __name__ == '__main__':
train_multi_task()