You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on Jan 10, 2023. It is now read-only.
Hi,
now that some optimized inference DNN libs like: NV TensorRT, Windows WinML and Qualcomm Snapdragon Neural Processing Engine (NPE) SDK support loading ONNX models (or whatever format like tensorflow etc.. for ONNX seems the most commonly/broadly supported) for simplicity would be nice if clDNN supports that also..
seems like a simple mnist sample should be much shorter than :
#include <api/CPP/memory.hpp>
#include <api/CPP/topology.hpp>
#include <api/CPP/reorder.hpp>
#include <api/CPP/input_layout.hpp>
#include <api/CPP/convolution.hpp>
#include <api/CPP/data.hpp>
#include <api/CPP/pooling.hpp>
#include <api/CPP/fully_connected.hpp>
#include <api/CPP/softmax.hpp>
#include <api/CPP/engine.hpp>
#include <api/CPP/network.hpp>
#include
using namespace cldnn;
using namespace std;
const tensor::value_type
input_channels = 1,
input_size = 28,
conv1_out_channels = 20,
conv2_out_channels = 50,
conv_krnl_size = 5,
fc1_num_outs = 500,
fc2_num_outs = 10;
// Create layout with same sizes but new format.
layout create_reordering_layout(format new_format, const layout& src_layout)
{
return { src_layout.data_type, new_format, src_layout.size };
}
// Create MNIST topology
topology create_topology(const layout& in_layout, const memory& conv1_weights_mem, const memory& conv1_bias_mem )
{
auto data_type = in_layout.data_type;
// Create input_layout description
// "input" - is the primitive id inside topology
input_layout input("input", in_layout);
// Create topology object with 2 primitives
cldnn:: topology topology(
// 1. input layout primitive.
input,
// 2. reorder primitive with id "reorder_input"
reorder("reorder_input",
// input primitive for reorder (implicitly converted to primitive_id)
input,
// output layout for reorder
create_reordering_layout(format::yxfb, in_layout))
);
// Create data primitive - its content should be set already.
cldnn::data conv1_weights( "conv1_weights", conv1_weights_mem );
// Add primitive to topology
topology.add(conv1_weights);
// Emplace new primitive to topology
topology.addcldnn::data({ "conv1_bias", conv1_bias_mem });
// Emplace 2 primitives
topology.add(
// Convolution primitive with id "conv1"
convolution("conv1",
"reorder_input", // primitive id of the convolution's input
{ conv1_weights }, // weights primitive id is taken from the object
{ "conv1_bias" } // bias primitive id
),
// Pooling id: "pool1"
pooling("pool1",
"conv1", // Input: "conv1"
pooling_mode::max, // Pooling mode: MAX
spatial(2,2), // stride: 2
spatial(2,2) // kernel_size: 2
)
);
// Conv2 weights data is not available now, so just declare its layout
layout conv2_weights_layout(data_type, format::bfyx,{ conv2_out_channels, conv1_out_channels, conv_krnl_size, conv_krnl_size });
// Define the rest of topology.
topology.add(
// Input layout for conv2 weights. Data will passed by network::set_input_data()
input_layout("conv2_weights", conv2_weights_layout),
// Input layout for conv2 bias.
input_layout("conv2_bias", { data_type, format::bfyx, spatial(conv2_out_channels) }),
// Second convolution id: "conv2"
convolution("conv2",
"pool1", // Input: "pool1"
{ "conv2_weights" }, // Weights: input_layout "conv2_weights"
{ "conv2_bias" } // Bias: input_layout "conv2_bias"
),
// Second pooling id: "pool2"
pooling("pool2",
"conv2", // Input: "conv2"
pooling_mode::max, // Pooling mode: MAX
spatial(2, 2), // stride: 2
spatial(2, 2) // kernel_size: 2
),
// Fully connected (inner product) primitive id "fc1"
fully_connected("fc1",
"pool2", // Input: "pool2"
"fc1_weights", // "fc1_weights" will be added to the topology later
"fc1_bias", // will be defined later
true // Use built-in Relu. Slope is set to 0 by default.
),
// Second FC/IP primitive id: "fc2", input: "fc1".
// Weights ("fc2_weights") and biases ("fc2_bias") will be defined later.
// Built-in Relu is disabled by default.
fully_connected("fc2", "fc1", "fc2_weights", "fc2_bias"),
// The "softmax" primitive is not an input for any other,
// so it will be automatically added to network outputs.
softmax("softmax", "fc2")
);
return topology;
}
// Copy from a vector to cldnn::memory
void copy_to_memory(memory& mem, const vector& src)
{
cldnn::pointer dst(mem);
std::copy(src.begin(), src.end(), dst.begin());
}
// Execute network
int recognize_image(network& network, const memory& input_memory)
{
// Set/update network input
network.set_input_data("input", input_memory);
// Start network execution
auto outputs = network.execute();
// get_memory() blocks output generation completed
auto output = outputs.at("softmax").get_memory();
// Get direct access to output memory
cldnn::pointer out_ptr(output);
// Analyze result
auto max_element_pos = max_element(out_ptr.begin(), out_ptr.end());
return static_cast(distance(out_ptr.begin(), max_element_pos));
}
// User-defined helpers which are out of this example scope
// //////////////////////////////////////////////////////////////
// Loads file to a vector of floats.
vector load_data(const string&) { return{ 0 }; }
// Allocates memory and loads data from file.
// Memory layout is taken from file.
memory load_mem(const engine& eng, const string&) {
//return a dummy value
return memory::allocate(eng, layout{ data_types::f32, format::bfyx, { 1, 1, 1, 1 } });
}
// Load image, resize to [x,y] and store in a vector of floats
// in the order "bfyx".
vector load_image_bfyx(const string&, int, int) { return{ 0 }; }
// //////////////////////////////////////////////////////////////
int main()
{
// Use data type: float
auto data_type = type_to_data_type::value;
// Network input layout
layout in_layout(
data_type, // stored data type
format::bfyx, // data stored in order batch-channel-Y-X, where X coordinate changes first.
{1, input_channels, input_size, input_size} // batch: 1, channels: 1, Y: 28, X: 28
);
// Create memory for conv1 weights
layout conv1_weights_layout(data_type, format::bfyx,{ conv1_out_channels, input_channels, conv_krnl_size, conv_krnl_size });
vector my_own_buffer = load_data("conv1_weights.bin");
// The conv1_weights_mem is attached to my_own_buffer, so my_own_buffer should not be changed or descroyed until network execution completion.
auto conv1_weights_mem = memory::attach(conv1_weights_layout, my_own_buffer.data(), my_own_buffer.size());
// Create default engine
cldnn::engine engine;
// Create memory for conv1 bias
layout conv1_bias_layout(data_type, format::bfyx, spatial(20));
// Memory allocation requires engine
auto conv1_bias_mem = memory::allocate(engine, conv1_bias_layout);
// The memory is allocated by library, so we do not need to care about buffer lifetime.
copy_to_memory(conv1_bias_mem, load_data("conv1_bias.bin"));
// Get new topology
cldnn::topology topology = create_topology(in_layout, conv1_weights_mem, conv1_bias_mem);
// Define network data not defined in create_topology()
topology.add(
cldnn::data("fc1_weights", load_mem(engine, "fc1_weights.data")),
cldnn::data("fc1_bias", load_mem(engine, "fc1_bias.data")),
cldnn::data("fc2_weights", load_mem(engine, "fc2_weights.data")),
cldnn::data("fc2_bias", load_mem(engine, "fc2_bias.data"))
);
// Build the network. Allow implicit data optimizations.
// The "softmax" primitive is not used as an input for other primitives,
// so we do not need to explicitly select it in build_options::outputs()
cldnn::network network(engine, topology, { build_option::optimize_data(true) });
// Set network data which was not known at topology creation.
network.set_input_data("conv2_weights", load_mem(engine, "conv2_weights.data"));
network.set_input_data("conv2_bias", load_mem(engine, "conv2_bias.data"));
// Allocate memory for input image.
auto input_memory = memory::allocate(engine, in_layout);
// Run network 2 times with different images.
for (auto img_name : { "one.jpg", "two.jpg" })
{
// Reuse image memory.
copy_to_memory(input_memory, load_image_bfyx("one.jpg", in_layout.size.spatial[0], in_layout.size.spatial[1]));
auto result = recognize_image(network, input_memory);
cout << img_name << " recognized as" << result << endl;
}
return 0;
The text was updated successfully, but these errors were encountered:
Hi,
now that some optimized inference DNN libs like: NV TensorRT, Windows WinML and Qualcomm Snapdragon Neural Processing Engine (NPE) SDK support loading ONNX models (or whatever format like tensorflow etc.. for ONNX seems the most commonly/broadly supported) for simplicity would be nice if clDNN supports that also..
seems like a simple mnist sample should be much shorter than :
The text was updated successfully, but these errors were encountered: