Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

resnet_16s #5

Open
irfanICMLL opened this issue Dec 7, 2017 · 0 comments
Open

resnet_16s #5

irfanICMLL opened this issue Dec 7, 2017 · 0 comments

Comments

@irfanICMLL
Copy link
Owner

from models.network import NetWork
import tensorflow as tf

class ResNet38(NetWork):
def setup(self, is_training, num_classes):
pass

class ResNet50(NetWork):
pass

class ResNet101(NetWork):
'''Network definition.

Args:
  is_training: whether to update the running mean and variance of the batch normalisation layer.
               If the batch size is small, it is better to keep the running mean and variance of
               the-pretrained model frozen.
  num_classes: number of classes to predict (including background).
'''

def setup(self, is_training, num_classes):
    (self.feed('data')
     .conv([7, 7], 64, [2, 2], biased=False, relu=False, name='conv1')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn_conv1')
     .max_pool([3, 3], [2, 2], name='pool1')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res2a_branch1')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn2a_branch1'))

    (self.feed('pool1')
     .conv([1, 1], 64, [1, 1], biased=False, relu=False, name='res2a_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2a_branch2a')
     .conv([3, 3], 64, [1, 1], biased=False, relu=False, name='res2a_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2a_branch2b')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res2a_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn2a_branch2c'))

    (self.feed('bn2a_branch1',
               'bn2a_branch2c')  # output_stride = 4
     .add(name='res2a')
     .relu(name='res2a_relu')
     .conv([1, 1], 64, [1, 1], biased=False, relu=False, name='res2b_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2b_branch2a')
     .conv([3, 3], 64, [1, 1], biased=False, relu=False, name='res2b_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2b_branch2b')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res2b_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn2b_branch2c'))

    (self.feed('res2a_relu',
               'bn2b_branch2c')
     .add(name='res2b')
     .relu(name='res2b_relu')
     .conv([1, 1], 64, [1, 1], biased=False, relu=False, name='res2c_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2c_branch2a')
     .conv([3, 3], 64, [1, 1], biased=False, relu=False, name='res2c_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2c_branch2b')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res2c_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn2c_branch2c'))

    (self.feed('res2b_relu',
               'bn2c_branch2c')
     .add(name='res2c')
     .relu(name='res2c_relu')
     .conv([1, 1], 512, [2, 2], biased=False, relu=False, name='res3a_branch1')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn3a_branch1'))

    (self.feed('res2c_relu')
     .conv([1, 1], 128, [2, 2], biased=False, relu=False, name='res3a_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3a_branch2a')
     .conv([3, 3], 128, [1, 1], biased=False, relu=False, name='res3a_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3a_branch2b')
     .conv([1, 1], 512, [1, 1], biased=False, relu=False, name='res3a_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn3a_branch2c'))

    (self.feed('bn3a_branch1',
               'bn3a_branch2c')  # output_stride = 8
     .add(name='res3a')
     .relu(name='res3a_relu')
     .conv([1, 1], 128, [1, 1], biased=False, relu=False, name='res3b1_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b1_branch2a')
     .conv([3, 3], 128, [1, 1], biased=False, relu=False, name='res3b1_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b1_branch2b')
     .conv([1, 1], 512, [1, 1], biased=False, relu=False, name='res3b1_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn3b1_branch2c'))

    (self.feed('res3a_relu',
               'bn3b1_branch2c')
     .add(name='res3b1')
     .relu(name='res3b1_relu')
     .conv([1, 1], 128, [1, 1], biased=False, relu=False, name='res3b2_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b2_branch2a')
     .conv([3, 3], 128, [1, 1], biased=False, relu=False, name='res3b2_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b2_branch2b')
     .conv([1, 1], 512, [1, 1], biased=False, relu=False, name='res3b2_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn3b2_branch2c'))

    (self.feed('res3b1_relu',
               'bn3b2_branch2c')
     .add(name='res3b2')
     .relu(name='res3b2_relu')
     .conv([1, 1], 128, [1, 1], biased=False, relu=False, name='res3b3_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b3_branch2a')
     .conv([3, 3], 128, [1, 1], biased=False, relu=False, name='res3b3_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b3_branch2b')
     .conv([1, 1], 512, [1, 1], biased=False, relu=False, name='res3b3_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn3b3_branch2c'))

    (self.feed('res3b2_relu',
               'bn3b3_branch2c')
     .add(name='res3b3')
     .relu(name='res3b3_relu')
     .conv([1, 1], 1024, [2, 2], biased=False, relu=False, name='res4a_branch1')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4a_branch1'))

    (self.feed('res3b3_relu')
     .conv([1, 1], 256, [2, 2], biased=False, relu=False, name='res4a_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4a_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4a_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4a_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4a_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4a_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4a_branch2c'))

    (self.feed('bn4a_branch1',
               'bn4a_branch2c')  # output_stride = 16
     .add(name='res4a')
     .relu(name='res4a_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b1_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b1_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b1_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b1_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b1_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b1_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b1_branch2c'))

    (self.feed('res4a_relu',
               'bn4b1_branch2c')
     .add(name='res4b1')
     .relu(name='res4b1_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b2_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b2_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b2_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b2_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b2_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b2_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b2_branch2c'))

    (self.feed('res4b1_relu',
               'bn4b2_branch2c')
     .add(name='res4b2')
     .relu(name='res4b2_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b3_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b3_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b3_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b3_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b3_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b3_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b3_branch2c'))

    (self.feed('res4b2_relu',
               'bn4b3_branch2c')
     .add(name='res4b3')
     .relu(name='res4b3_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b4_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b4_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b4_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b4_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b4_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b4_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b4_branch2c'))

    (self.feed('res4b3_relu',
               'bn4b4_branch2c')
     .add(name='res4b4')
     .relu(name='res4b4_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b5_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b5_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b5_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b5_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b5_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b5_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b5_branch2c'))

    (self.feed('res4b4_relu',
               'bn4b5_branch2c')
     .add(name='res4b5')
     .relu(name='res4b5_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b6_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b6_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b6_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b6_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b6_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b6_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b6_branch2c'))

    (self.feed('res4b5_relu',
               'bn4b6_branch2c')
     .add(name='res4b6')
     .relu(name='res4b6_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b7_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b7_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b7_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b7_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b7_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b7_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b7_branch2c'))

    (self.feed('res4b6_relu',
               'bn4b7_branch2c')
     .add(name='res4b7')
     .relu(name='res4b7_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b8_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b8_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b8_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b8_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b8_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b8_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b8_branch2c'))

    (self.feed('res4b7_relu',
               'bn4b8_branch2c')
     .add(name='res4b8')
     .relu(name='res4b8_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b9_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b9_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b9_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b9_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b9_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b9_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b9_branch2c'))

    (self.feed('res4b8_relu',
               'bn4b9_branch2c')
     .add(name='res4b9')
     .relu(name='res4b9_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b10_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b10_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b10_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b10_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b10_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b10_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b10_branch2c'))

    (self.feed('res4b9_relu',
               'bn4b10_branch2c')
     .add(name='res4b10')
     .relu(name='res4b10_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b11_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b11_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b11_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b11_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b11_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b11_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b11_branch2c'))

    (self.feed('res4b10_relu',
               'bn4b11_branch2c')
     .add(name='res4b11')
     .relu(name='res4b11_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b12_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b12_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b12_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b12_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b12_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b12_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b12_branch2c'))

    (self.feed('res4b11_relu',
               'bn4b12_branch2c')
     .add(name='res4b12')
     .relu(name='res4b12_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b13_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b13_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b13_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b13_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b13_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b13_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b13_branch2c'))

    (self.feed('res4b12_relu',
               'bn4b13_branch2c')
     .add(name='res4b13')
     .relu(name='res4b13_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b14_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b14_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b14_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b14_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b14_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b14_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b14_branch2c'))

    (self.feed('res4b13_relu',
               'bn4b14_branch2c')
     .add(name='res4b14')
     .relu(name='res4b14_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b15_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b15_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b15_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b15_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b15_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b15_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b15_branch2c'))

    (self.feed('res4b14_relu',
               'bn4b15_branch2c')
     .add(name='res4b15')
     .relu(name='res4b15_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b16_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b16_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b16_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b16_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b16_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b16_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b16_branch2c'))

    (self.feed('res4b15_relu',
               'bn4b16_branch2c')
     .add(name='res4b16')
     .relu(name='res4b16_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b17_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b17_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b17_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b17_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b17_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b17_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b17_branch2c'))

    (self.feed('res4b16_relu',
               'bn4b17_branch2c')
     .add(name='res4b17')
     .relu(name='res4b17_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b18_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b18_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b18_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b18_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b18_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b18_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b18_branch2c'))

    (self.feed('res4b17_relu',
               'bn4b18_branch2c')
     .add(name='res4b18')
     .relu(name='res4b18_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b19_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b19_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b19_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b19_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b19_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b19_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b19_branch2c'))

    (self.feed('res4b18_relu',
               'bn4b19_branch2c')
     .add(name='res4b19')
     .relu(name='res4b19_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b20_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b20_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b20_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b20_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b20_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b20_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b20_branch2c'))

    (self.feed('res4b19_relu',
               'bn4b20_branch2c')
     .add(name='res4b20')
     .relu(name='res4b20_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b21_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b21_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b21_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b21_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b21_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b21_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b21_branch2c'))

    (self.feed('res4b20_relu',
               'bn4b21_branch2c')
     .add(name='res4b21')
     .relu(name='res4b21_relu')
     .conv([1, 1], 256, [1, 1], biased=False, relu=False, name='res4b22_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b22_branch2a')
     .conv([3, 3], 256, [1, 1], biased=False, relu=False, name='res4b22_branch2b')
     #.atrous_conv([3, 3], 256, 2, padding='SAME', biased=False, relu=False, name='res4b22_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b22_branch2b')
     .conv([1, 1], 1024, [1, 1], biased=False, relu=False, name='res4b22_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b22_branch2c'))

    (self.feed('res4b21_relu',
               'bn4b22_branch2c')
     .add(name='res4b22')
     .relu(name='res4b22_relu')
     .conv([1, 1], 2048, [1, 1], biased=False, relu=False, name='res5a_branch1')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn5a_branch1'))

    (self.feed('res4b22_relu')
     .conv([1, 1], 512, [1, 1], biased=False, relu=False, name='res5a_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5a_branch2a')
     .atrous_conv([3, 3], 512, 2, padding='SAME', biased=False, relu=False, name='res5a_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5a_branch2b')
     .conv([1, 1], 2048, [1, 1], biased=False, relu=False, name='res5a_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn5a_branch2c'))

    (self.feed('bn5a_branch1',
               'bn5a_branch2c')  # output_stride = 16
     .add(name='res5a')
     .relu(name='res5a_relu')
     .conv([1, 1], 512, [1, 1], biased=False, relu=False, name='res5b_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5b_branch2a')
     .atrous_conv([3, 3], 512, 4, padding='SAME', biased=False, relu=False, name='res5b_branch2b')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5b_branch2b')
     .conv([1, 1], 2048, [1, 1], biased=False, relu=False, name='res5b_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn5b_branch2c'))

    (self.feed('res5a_relu',
               'bn5b_branch2c')
     .add(name='res5b')
     .relu(name='res5b_relu')
     .conv([1, 1], 512, [1, 1], biased=False, relu=False, name='res5c_branch2a')
     .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5c_branch2a')
     .atrous_conv([3, 3], 512, 8, padding='SAME', biased=False, relu=False, name='res5c_branch2b')
     .batch_normalization(activation_fn=tf.nn.relu, name='bn5c_branch2b', is_training=is_training)
     .conv([1, 1], 2048, [1, 1], biased=False, relu=False, name='res5c_branch2c')
     .batch_normalization(is_training=is_training, activation_fn=None, name='bn5c_branch2c'))

    (self.feed('res5b_relu',
               'bn5c_branch2c')
     .add(name='res5c')
     .relu(name='res5c_relu'))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant