You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, thanks for the great work,I had some problems replicating the paper, when i run eval_dtu.sh, main.py has an error . on line 183, trainer.validate(volrecon, dataloader_test1).
[rank0]: Traceback (most recent call last):
[rank0]: File "/data/tx/volrecon/VolRecon-main/main.py", line 183, in
[rank0]: trainer.validate(volrecon, dataloader_test1)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 697, in validate
[rank0]: return call._call_and_handle_interrupt(
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 36, in _call_and_handle_interrupt
[rank0]: return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/subprocess_script.py", line 88, in launch
[rank0]: return function(*args, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 745, in _validate_impl
[rank0]: results = self._run(model, ckpt_path=self.ckpt_path)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1112, in _run
[rank0]: results = self._run_stage()
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1188, in _run_stage
[rank0]: return self._run_evaluate()
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1228, in _run_evaluate
[rank0]: eval_loop_results = self._evaluation_loop.run()
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/loop.py", line 199, in run
[rank0]: self.advance(*args, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py", line 152, in advance
[rank0]: dl_outputs = self.epoch_loop.run(self._data_fetcher, dl_max_batches, kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/loop.py", line 199, in run
[rank0]: self.advance(*args, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 137, in advance
[rank0]: output = self._evaluation_step(**kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 234, in _evaluation_step
[rank0]: output = self.trainer._call_strategy_hook(hook_name, *kwargs.values())
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1494, in _call_strategy_hook
[rank0]: output = fn(*args, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/strategies/ddp.py", line 363, in validation_step
[rank0]: return self.model.validation_step(*args, **kwargs)
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/model.py", line 265, in validation_step
[rank0]: self.extract_geometry(batch, batch_idx)
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/model.py", line 375, in extract_geometry
[rank0]: srdf, points_x, depth, rgb = self.infer(batch=batch, ray_idx=ray_idx, source_imgs_feat=source_imgs_feat,
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/model.py", line 143, in infer
[rank0]: rgb, depth, srdf, opacity, weight, points_in_pixel, _ = self.sample2rgb(batch, points_x, z_val, ray_d, ray_idx,
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/model.py", line 85, in sample2rgb
[rank0]: rgb, depth, opacity, weight, variance = self.renderer.render(rearrange(z_val, "B RN SN -> (B RN) SN"),
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/utils/renderer.py", line 32, in render
[rank0]: iter_cos = -(F.relu(-true_cos * 0.5 + 0.5) * (1.0 - cos_anneal_ratio) + F.relu(-true_cos) * cos_anneal_ratio)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/torch/nn/functional.py", line 1500, in relu
[rank0]: result = torch.relu(input)
[rank0]: TypeError: relu(): argument 'input' (position 1) must be Tensor, not float
I can't solve the problem right now, and I'd appreciate your help
The text was updated successfully, but these errors were encountered:
Hi, thanks for the great work,I had some problems replicating the paper, when i run eval_dtu.sh, main.py has an error . on line 183, trainer.validate(volrecon, dataloader_test1).
[rank0]: Traceback (most recent call last):
[rank0]: File "/data/tx/volrecon/VolRecon-main/main.py", line 183, in
[rank0]: trainer.validate(volrecon, dataloader_test1)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 697, in validate
[rank0]: return call._call_and_handle_interrupt(
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 36, in _call_and_handle_interrupt
[rank0]: return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/subprocess_script.py", line 88, in launch
[rank0]: return function(*args, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 745, in _validate_impl
[rank0]: results = self._run(model, ckpt_path=self.ckpt_path)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1112, in _run
[rank0]: results = self._run_stage()
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1188, in _run_stage
[rank0]: return self._run_evaluate()
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1228, in _run_evaluate
[rank0]: eval_loop_results = self._evaluation_loop.run()
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/loop.py", line 199, in run
[rank0]: self.advance(*args, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py", line 152, in advance
[rank0]: dl_outputs = self.epoch_loop.run(self._data_fetcher, dl_max_batches, kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/loop.py", line 199, in run
[rank0]: self.advance(*args, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 137, in advance
[rank0]: output = self._evaluation_step(**kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 234, in _evaluation_step
[rank0]: output = self.trainer._call_strategy_hook(hook_name, *kwargs.values())
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1494, in _call_strategy_hook
[rank0]: output = fn(*args, **kwargs)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/pytorch_lightning/strategies/ddp.py", line 363, in validation_step
[rank0]: return self.model.validation_step(*args, **kwargs)
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/model.py", line 265, in validation_step
[rank0]: self.extract_geometry(batch, batch_idx)
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/model.py", line 375, in extract_geometry
[rank0]: srdf, points_x, depth, rgb = self.infer(batch=batch, ray_idx=ray_idx, source_imgs_feat=source_imgs_feat,
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/model.py", line 143, in infer
[rank0]: rgb, depth, srdf, opacity, weight, points_in_pixel, _ = self.sample2rgb(batch, points_x, z_val, ray_d, ray_idx,
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/model.py", line 85, in sample2rgb
[rank0]: rgb, depth, opacity, weight, variance = self.renderer.render(rearrange(z_val, "B RN SN -> (B RN) SN"),
[rank0]: File "/data/tx/volrecon/VolRecon-main/code/utils/renderer.py", line 32, in render
[rank0]: iter_cos = -(F.relu(-true_cos * 0.5 + 0.5) * (1.0 - cos_anneal_ratio) + F.relu(-true_cos) * cos_anneal_ratio)
[rank0]: File "/data/tx/Anaconda3/envs/UFORecon/lib/python3.10/site-packages/torch/nn/functional.py", line 1500, in relu
[rank0]: result = torch.relu(input)
[rank0]: TypeError: relu(): argument 'input' (position 1) must be Tensor, not float
I can't solve the problem right now, and I'd appreciate your help
The text was updated successfully, but these errors were encountered: