-
Notifications
You must be signed in to change notification settings - Fork 52
/
benchmark.py
265 lines (240 loc) · 11.3 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
import glob
import numpy as np
import math
import _pickle as cPickle
pred_data = "eval_results/TEST_"
pred_list = [1] # eval_id list, if you want to test the mean score of TEST_1 and TEST_2, change to [1,2]
data_dir = "My_NOCS"
synset_names = ['BG',
'bottle',
'bowl',
'camera',
'can',
'laptop',
'mug'
]
def compute_3d_iou_new(RT_1, RT_2, noc_cube_1, noc_cube_2, handle_visibility, class_name_1, class_name_2):
'''Computes IoU overlaps between two 3d bboxes.
bbox_3d_1, bbox_3d_1: [3, 8]
'''
# flatten masks
def asymmetric_3d_iou(RT_1, RT_2, noc_cube_1, noc_cube_2):
bbox_3d_1 = transform_coordinates_3d(noc_cube_1, RT_1)
bbox_3d_2 = transform_coordinates_3d(noc_cube_2, RT_2)
bbox_1_max = np.amax(bbox_3d_1, axis=0)
bbox_1_min = np.amin(bbox_3d_1, axis=0)
bbox_2_max = np.amax(bbox_3d_2, axis=0)
bbox_2_min = np.amin(bbox_3d_2, axis=0)
overlap_min = np.maximum(bbox_1_min, bbox_2_min)
overlap_max = np.minimum(bbox_1_max, bbox_2_max)
# intersections and union
if np.amin(overlap_max - overlap_min) <0:
intersections = 0
else:
intersections = np.prod(overlap_max - overlap_min)
union = np.prod(bbox_1_max - bbox_1_min) + np.prod(bbox_2_max - bbox_2_min) - intersections
overlaps = intersections / union
return overlaps
symmetry_flag = False
if (class_name_1 in ['bottle', 'bowl', 'can'] and class_name_1 == class_name_2) or (class_name_1 == 'mug' and class_name_1 == class_name_2 and handle_visibility==0):
bbox_3d_2 = transform_coordinates_3d(noc_cube_2, RT_2)
def y_rotation_matrix(theta):
return np.array([[np.cos(theta), 0, np.sin(theta), 0],
[0, 1, 0 , 0],
[-np.sin(theta), 0, np.cos(theta), 0],
[0, 0, 0 , 1]])
n = 20
max_iou = 0
for i in range(n):
rotated_RT_1 = RT_1@y_rotation_matrix(2*math.pi*i/float(n))
max_iou = max(max_iou,
asymmetric_3d_iou(rotated_RT_1, RT_2, noc_cube_1, noc_cube_2))
else:
max_iou = asymmetric_3d_iou(RT_1, RT_2, noc_cube_1, noc_cube_2)
return max_iou
def transform_coordinates_3d(coordinates, RT):
"""
Input:
coordinates: [3, N]
RT: [4, 4]
Return
new_coordinates: [3, N]
"""
assert coordinates.shape[0] == 3
coordinates = np.vstack([coordinates, np.ones((1, coordinates.shape[1]), dtype=np.float32)])
new_coordinates = RT @ coordinates
new_coordinates = new_coordinates[:3, :]/new_coordinates[3, :]
return new_coordinates
def compute_RT_degree_cm_symmetry(RT_1, RT_2, class_id, handle_visibility, synset_names):
if RT_1 is None or RT_2 is None:
return 10000,10000
try:
assert np.array_equal(RT_1[3, :], RT_2[3, :])
assert np.array_equal(RT_1[3, :], np.array([0, 0, 0, 1]))
except AssertionError:
return 10000,10000
R1 = RT_1[:3, :3] / np.cbrt(np.linalg.det(RT_1[:3, :3]))
T1 = RT_1[:3, 3]
R2 = RT_2[:3, :3] / np.cbrt(np.linalg.det(RT_2[:3, :3]))
T2 = RT_2[:3, 3]
if synset_names[class_id] in ['bottle', 'can', 'bowl']:
y = np.array([0, 1, 0])
y1 = R1 @ y
y2 = R2 @ y
theta = np.arccos(y1.dot(y2) / (np.linalg.norm(y1) * np.linalg.norm(y2)))
elif synset_names[class_id] == 'mug' and handle_visibility==0:
y = np.array([0, 1, 0])
y1 = R1 @ y
y2 = R2 @ y
theta = np.arccos(y1.dot(y2) / (np.linalg.norm(y1) * np.linalg.norm(y2)))
elif synset_names[class_id] in ['phone', 'eggbox', 'glue']:
y_180_RT = np.diag([-1.0, 1.0, -1.0])
R = R1 @ R2.transpose()
R_rot = R1 @ y_180_RT @ R2.transpose()
theta = min(np.arccos((np.trace(R) - 1) / 2),
np.arccos((np.trace(R_rot) - 1) / 2))
else:
R = R1 @ R2.transpose()
theta = np.arccos((np.trace(R) - 1) / 2)
theta *= 180 / np.pi
shift = np.linalg.norm(T1 - T2)
result = np.array([theta, shift])
return result
score_dict = {}
def main():
all_score = []
all_score25 = []
all_rot_err = []
all_trans_err = []
for exp in pred_list:
print(exp)
all_score.append([])
all_score25.append([])
all_rot_err.append([])
all_trans_err.append([])
pred_data_dir = pred_data + str(exp)
score = 0
score_25 = 0
rot_err = 0
trans_err = 0
for cls_idx in [1,2,3,4,5,6]:
cls_num = 0
cls_test_num = 0
cls_in_5_5 = 0
cls_iou_25 = 0
cls_path = os.path.join(data_dir, "data_list/real_val", str(cls_idx))
cls_rot = []
cls_trans = []
model_list = glob.glob(os.path.join(cls_path, "*"))
for model_path in model_list:
scene_his = ""
model_num = 0
scene_num = 0
scene_in = 0
model_name = model_path.split("/")[-1]
print(model_name)
if not model_name in score_dict:
score_dict[model_name] = {}
list_path = os.path.join(model_path, "list.txt")
with open(list_path, 'r') as list_file:
for img_path in list_file:
img_path = os.path.join(data_dir, "data", img_path)
img_path = img_path.replace("\n", "")
scene = img_path.split("/")[-2]
nocs_gt_path = os.path.join(data_dir, "data", "gts", "real_test", "results_real_test_" + scene + "_" + img_path.split("/")[-1] + ".pkl")
if not os.path.exists(nocs_gt_path):
continue
cls_num = cls_num + 1
if scene != scene_his:
if scene_his != "":
if not scene_his in score_dict[model_name]:
score_dict[model_name][scene_his] = {'temp':0,'score':0}
if scene_in/scene_num > score_dict[model_name][scene_his]['score']:
score_dict[model_name][scene_his]['score'] = scene_in/scene_num
score_dict[model_name][scene_his]['temp'] = exp
scene_his = scene
scene_num = 0
scene_in = 0
pred_path = os.path.join(pred_data_dir, "temp_" + str(cls_idx), model_name + "_" + scene + "_" + str(model_num) + "_pose.txt")
model_num = model_num + 1
scene_num = scene_num + 1
if not os.path.exists(pred_path):
print(pred_path)
continue
obj_path = img_path + "_meta.txt"
ins_id = -1
num_idx = 0
with open(obj_path, "r") as obj_f:
for line in obj_f:
if int(line.split(" ")[1]) == cls_idx and line.split(" ")[-1].replace("\n","") == model_name:
ins_id = int(line.split(" ")[0])
break
num_idx = num_idx + 1
if ins_id == -1:
continue
with open(nocs_gt_path, 'rb') as f:
result = cPickle.load(f)
gt_pose = result['gt_RTs'][num_idx]
gt_pose[:3,3] = gt_pose[:3,3] * 1000
with open(pred_path, "r") as pred_f:
pred_pose = []
for i in range(3):
pred_pose.append([])
new_line = pred_f.readline()
for j in range(3):
pred_pose[i].append(float(new_line.split(" ")[j]))
new_line = pred_f.readline()
for i in range(3):
pred_pose[i].append(float(new_line.split(" ")[i]))
pred_pose.append([0.0,0.0,0.0,1.0])
z_180_RT = np.zeros((4, 4), dtype=np.float32)
z_180_RT[:3, :3] = np.diag([-1, -1, 1])
z_180_RT[3, 3] = 1
pred_pose = z_180_RT @ pred_pose
gt_pose = np.array(gt_pose)
pred_pose = np.array(pred_pose)
result = compute_RT_degree_cm_symmetry(pred_pose, gt_pose, cls_idx, 1, synset_names)
bbox = np.loadtxt(data_dir + "/model_scales/" + model_name + ".txt").transpose()
miou = compute_3d_iou_new(gt_pose, pred_pose, bbox, bbox, 1, synset_names[cls_idx], synset_names[cls_idx])
cls_test_num = cls_test_num + 1
if miou > 0.25 and result[0] < 360:
cls_rot.append(result[0])
if miou > 0.25:
cls_trans.append(result[1])
if miou > 0.25:
cls_iou_25 = cls_iou_25 + 1
if result[0] < 5 and result[1] < 50:
scene_in = scene_in + 1
cls_in_5_5 = cls_in_5_5 + 1
if not scene_his in score_dict[model_name]:
score_dict[model_name][scene_his] = {'temp':0,'score':0}
if scene_in/scene_num > score_dict[model_name][scene_his]['score']:
score_dict[model_name][scene_his]['score'] = scene_in/scene_num
score_dict[model_name][scene_his]['temp'] = exp
all_score[-1].append(cls_in_5_5/cls_num)
all_score25[-1].append(cls_iou_25/cls_num)
all_rot_err[-1].append(np.mean(cls_rot))
all_trans_err[-1].append(np.mean(cls_trans))
score = score + (cls_in_5_5/cls_num)/6
score_25 = score_25 + (cls_iou_25/cls_num)/6
rot_err = rot_err + np.mean(cls_rot)/6
trans_err = trans_err + np.mean(cls_trans)/6
print("********************************************************")
print("5cm 5degree:",score*100)
print("IoU 25: ",score_25*100)
print("rot error: ",rot_err)
print("tran error: ",trans_err/10)
all_score[-1].append(score)
all_score25[-1].append(score_25)
all_rot_err[-1].append(rot_err)
all_trans_err[-1].append(trans_err)
print("********************************************************")
print("Mean 5cm 5degree:",np.mean(np.array(all_score)*100,0)[-1])
print("Mean IoU 25: ",np.mean(np.array(all_score25)*100,0)[-1])
print("Mean rot error: ",np.mean(np.array(all_rot_err),0)[-1])
print("Mean tran error: ",np.mean(np.array(all_trans_err)/10,0)[-1])
#print(score_dict)
print("********************************************************")
if __name__ == "__main__":
main()