A semismooth-Newton-based proximal augmented Lagrangian (p-ALM) solver
where
-
$\mathsf{CVaR}_{\tau}\bigl(y\bigr)$ denotes the (empirical) superquantile of a (realization of a random) vector$y\in\mathbb{R}^m$ at confidence$\tau\in(0,1)$ with$\mathsf{CVaR}_{\tau}\bigl(y\bigr) = k(\tau)^{-1}\mathsf{T}_{k(\tau)}(y)$ where$k(\tau) := m\cdot(1-\tau)$ and where$\mathsf{T}_k(\cdot)$ denotes the top-$\!\!k$ -sum operator$^{[2]}$ -
$f$ is smooth and convex; - for each
$\ell\in\{0,1,\ldots,L\}$ ,$G^\ell(x;\omega^{[m]}) := \bigl\{g^\ell(x;\omega^j)\bigr\}_{j=1}^m$ is a collection of convex continuously differentiable scalar functions$g^\ell(\,\cdot\,; \omega)$ evaluated at$m$ SAA scenarios$\{ \omega^j \}_{j=1}^m$ .
Note that the solver framework can handle different a number of scenarios for each superquantile constraint
The repository contains two directories related to the paper https://arxiv.org/abs/2405.07965:
src/
: implementations of the p-ALM.run/
: scripts for running the experiments.