forked from msazurestackworkloads/kubernetes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
util.go
412 lines (357 loc) · 14.5 KB
/
util.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package volume
import (
"fmt"
"reflect"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/fields"
"k8s.io/apimachinery/pkg/watch"
"k8s.io/kubernetes/pkg/api/v1"
"k8s.io/kubernetes/pkg/client/clientset_generated/clientset"
"hash/fnv"
"math/rand"
"strconv"
"strings"
"github.com/golang/glog"
"k8s.io/apimachinery/pkg/api/errors"
"k8s.io/apimachinery/pkg/api/resource"
"k8s.io/apimachinery/pkg/types"
"k8s.io/apimachinery/pkg/util/sets"
volutil "k8s.io/kubernetes/pkg/volume/util"
)
type RecycleEventRecorder func(eventtype, message string)
// RecycleVolumeByWatchingPodUntilCompletion is intended for use with volume
// Recyclers. This function will save the given Pod to the API and watch it
// until it completes, fails, or the pod's ActiveDeadlineSeconds is exceeded,
// whichever comes first. An attempt to delete a recycler pod is always
// attempted before returning.
//
// In case there is a pod with the same namespace+name already running, this
// function assumes it's an older instance of the recycler pod and watches
// this old pod instead of starting a new one.
//
// pod - the pod designed by a volume plugin to recycle the volume. pod.Name
// will be overwritten with unique name based on PV.Name.
// client - kube client for API operations.
func RecycleVolumeByWatchingPodUntilCompletion(pvName string, pod *v1.Pod, kubeClient clientset.Interface, recorder RecycleEventRecorder) error {
return internalRecycleVolumeByWatchingPodUntilCompletion(pvName, pod, newRecyclerClient(kubeClient, recorder))
}
// same as above func comments, except 'recyclerClient' is a narrower pod API
// interface to ease testing
func internalRecycleVolumeByWatchingPodUntilCompletion(pvName string, pod *v1.Pod, recyclerClient recyclerClient) error {
glog.V(5).Infof("creating recycler pod for volume %s\n", pod.Name)
// Generate unique name for the recycler pod - we need to get "already
// exists" error when a previous controller has already started recycling
// the volume. Here we assume that pv.Name is already unique.
pod.Name = "recycler-for-" + pvName
pod.GenerateName = ""
stopChannel := make(chan struct{})
defer close(stopChannel)
podCh, err := recyclerClient.WatchPod(pod.Name, pod.Namespace, stopChannel)
if err != nil {
glog.V(4).Infof("cannot start watcher for pod %s/%s: %v", pod.Namespace, pod.Name, err)
return err
}
// Start the pod
_, err = recyclerClient.CreatePod(pod)
if err != nil {
if errors.IsAlreadyExists(err) {
glog.V(5).Infof("old recycler pod %q found for volume", pod.Name)
} else {
return fmt.Errorf("unexpected error creating recycler pod: %+v\n", err)
}
}
defer func(pod *v1.Pod) {
glog.V(2).Infof("deleting recycler pod %s/%s", pod.Namespace, pod.Name)
if err := recyclerClient.DeletePod(pod.Name, pod.Namespace); err != nil {
glog.Errorf("failed to delete recycler pod %s/%s: %v", pod.Namespace, pod.Name, err)
}
}(pod)
// Now only the old pod or the new pod run. Watch it until it finishes
// and send all events on the pod to the PV
for {
event, ok := <-podCh
if !ok {
return fmt.Errorf("recycler pod %q watch channel had been closed", pod.Name)
}
switch event.Object.(type) {
case *v1.Pod:
// POD changed
pod := event.Object.(*v1.Pod)
glog.V(4).Infof("recycler pod update received: %s %s/%s %s", event.Type, pod.Namespace, pod.Name, pod.Status.Phase)
switch event.Type {
case watch.Added, watch.Modified:
if pod.Status.Phase == v1.PodSucceeded {
// Recycle succeeded.
return nil
}
if pod.Status.Phase == v1.PodFailed {
if pod.Status.Message != "" {
return fmt.Errorf(pod.Status.Message)
} else {
return fmt.Errorf("pod failed, pod.Status.Message unknown.")
}
}
case watch.Deleted:
return fmt.Errorf("recycler pod was deleted")
case watch.Error:
return fmt.Errorf("recycler pod watcher failed")
}
case *v1.Event:
// Event received
podEvent := event.Object.(*v1.Event)
glog.V(4).Infof("recycler event received: %s %s/%s %s/%s %s", event.Type, podEvent.Namespace, podEvent.Name, podEvent.InvolvedObject.Namespace, podEvent.InvolvedObject.Name, podEvent.Message)
if event.Type == watch.Added {
recyclerClient.Event(podEvent.Type, podEvent.Message)
}
}
}
}
// recyclerClient abstracts access to a Pod by providing a narrower interface.
// This makes it easier to mock a client for testing.
type recyclerClient interface {
CreatePod(pod *v1.Pod) (*v1.Pod, error)
GetPod(name, namespace string) (*v1.Pod, error)
DeletePod(name, namespace string) error
// WatchPod returns a ListWatch for watching a pod. The stopChannel is used
// to close the reflector backing the watch. The caller is responsible for
// derring a close on the channel to stop the reflector.
WatchPod(name, namespace string, stopChannel chan struct{}) (<-chan watch.Event, error)
// Event sends an event to the volume that is being recycled.
Event(eventtype, message string)
}
func newRecyclerClient(client clientset.Interface, recorder RecycleEventRecorder) recyclerClient {
return &realRecyclerClient{
client,
recorder,
}
}
type realRecyclerClient struct {
client clientset.Interface
recorder RecycleEventRecorder
}
func (c *realRecyclerClient) CreatePod(pod *v1.Pod) (*v1.Pod, error) {
return c.client.Core().Pods(pod.Namespace).Create(pod)
}
func (c *realRecyclerClient) GetPod(name, namespace string) (*v1.Pod, error) {
return c.client.Core().Pods(namespace).Get(name, metav1.GetOptions{})
}
func (c *realRecyclerClient) DeletePod(name, namespace string) error {
return c.client.Core().Pods(namespace).Delete(name, nil)
}
func (c *realRecyclerClient) Event(eventtype, message string) {
c.recorder(eventtype, message)
}
func (c *realRecyclerClient) WatchPod(name, namespace string, stopChannel chan struct{}) (<-chan watch.Event, error) {
podSelector, _ := fields.ParseSelector("metadata.name=" + name)
options := metav1.ListOptions{
FieldSelector: podSelector.String(),
Watch: true,
}
podWatch, err := c.client.Core().Pods(namespace).Watch(options)
if err != nil {
return nil, err
}
eventSelector, _ := fields.ParseSelector("involvedObject.name=" + name)
eventWatch, err := c.client.Core().Events(namespace).Watch(metav1.ListOptions{
FieldSelector: eventSelector.String(),
Watch: true,
})
if err != nil {
podWatch.Stop()
return nil, err
}
eventCh := make(chan watch.Event, 30)
go func() {
defer eventWatch.Stop()
defer podWatch.Stop()
defer close(eventCh)
var podWatchChannelClosed bool
var eventWatchChannelClosed bool
for {
select {
case _ = <-stopChannel:
return
case podEvent, ok := <-podWatch.ResultChan():
if !ok {
podWatchChannelClosed = true
} else {
eventCh <- podEvent
}
case eventEvent, ok := <-eventWatch.ResultChan():
if !ok {
eventWatchChannelClosed = true
} else {
eventCh <- eventEvent
}
}
if podWatchChannelClosed && eventWatchChannelClosed {
break
}
}
}()
return eventCh, nil
}
// CalculateTimeoutForVolume calculates time for a Recycler pod to complete a
// recycle operation. The calculation and return value is either the
// minimumTimeout or the timeoutIncrement per Gi of storage size, whichever is
// greater.
func CalculateTimeoutForVolume(minimumTimeout, timeoutIncrement int, pv *v1.PersistentVolume) int64 {
giQty := resource.MustParse("1Gi")
pvQty := pv.Spec.Capacity[v1.ResourceStorage]
giSize := giQty.Value()
pvSize := pvQty.Value()
timeout := (pvSize / giSize) * int64(timeoutIncrement)
if timeout < int64(minimumTimeout) {
return int64(minimumTimeout)
} else {
return timeout
}
}
// RoundUpSize calculates how many allocation units are needed to accommodate
// a volume of given size. E.g. when user wants 1500MiB volume, while AWS EBS
// allocates volumes in gibibyte-sized chunks,
// RoundUpSize(1500 * 1024*1024, 1024*1024*1024) returns '2'
// (2 GiB is the smallest allocatable volume that can hold 1500MiB)
func RoundUpSize(volumeSizeBytes int64, allocationUnitBytes int64) int64 {
return (volumeSizeBytes + allocationUnitBytes - 1) / allocationUnitBytes
}
// GenerateVolumeName returns a PV name with clusterName prefix. The function
// should be used to generate a name of GCE PD or Cinder volume. It basically
// adds "<clusterName>-dynamic-" before the PV name, making sure the resulting
// string fits given length and cuts "dynamic" if not.
func GenerateVolumeName(clusterName, pvName string, maxLength int) string {
prefix := clusterName + "-dynamic"
pvLen := len(pvName)
// cut the "<clusterName>-dynamic" to fit full pvName into maxLength
// +1 for the '-' dash
if pvLen+1+len(prefix) > maxLength {
prefix = prefix[:maxLength-pvLen-1]
}
return prefix + "-" + pvName
}
// Check if the path from the mounter is empty.
func GetPath(mounter Mounter) (string, error) {
path := mounter.GetPath()
if path == "" {
return "", fmt.Errorf("Path is empty %s", reflect.TypeOf(mounter).String())
}
return path, nil
}
// ChooseZone implements our heuristics for choosing a zone for volume creation based on the volume name
// Volumes are generally round-robin-ed across all active zones, using the hash of the PVC Name.
// However, if the PVCName ends with `-<integer>`, we will hash the prefix, and then add the integer to the hash.
// This means that a StatefulSet's volumes (`claimname-statefulsetname-id`) will spread across available zones,
// assuming the id values are consecutive.
func ChooseZoneForVolume(zones sets.String, pvcName string) string {
// We create the volume in a zone determined by the name
// Eventually the scheduler will coordinate placement into an available zone
var hash uint32
var index uint32
if pvcName == "" {
// We should always be called with a name; this shouldn't happen
glog.Warningf("No name defined during volume create; choosing random zone")
hash = rand.Uint32()
} else {
hashString := pvcName
// Heuristic to make sure that volumes in a StatefulSet are spread across zones
// StatefulSet PVCs are (currently) named ClaimName-StatefulSetName-Id,
// where Id is an integer index.
// Note though that if a StatefulSet pod has multiple claims, we need them to be
// in the same zone, because otherwise the pod will be unable to mount both volumes,
// and will be unschedulable. So we hash _only_ the "StatefulSetName" portion when
// it looks like `ClaimName-StatefulSetName-Id`.
// We continue to round-robin volume names that look like `Name-Id` also; this is a useful
// feature for users that are creating statefulset-like functionality without using statefulsets.
lastDash := strings.LastIndexByte(pvcName, '-')
if lastDash != -1 {
statefulsetIDString := pvcName[lastDash+1:]
statefulsetID, err := strconv.ParseUint(statefulsetIDString, 10, 32)
if err == nil {
// Offset by the statefulsetID, so we round-robin across zones
index = uint32(statefulsetID)
// We still hash the volume name, but only the prefix
hashString = pvcName[:lastDash]
// In the special case where it looks like `ClaimName-StatefulSetName-Id`,
// hash only the StatefulSetName, so that different claims on the same StatefulSet
// member end up in the same zone.
// Note that StatefulSetName (and ClaimName) might themselves both have dashes.
// We actually just take the portion after the final - of ClaimName-StatefulSetName.
// For our purposes it doesn't much matter (just suboptimal spreading).
lastDash := strings.LastIndexByte(hashString, '-')
if lastDash != -1 {
hashString = hashString[lastDash+1:]
}
glog.V(2).Infof("Detected StatefulSet-style volume name %q; index=%d", pvcName, index)
}
}
// We hash the (base) volume name, so we don't bias towards the first N zones
h := fnv.New32()
h.Write([]byte(hashString))
hash = h.Sum32()
}
// Zones.List returns zones in a consistent order (sorted)
// We do have a potential failure case where volumes will not be properly spread,
// if the set of zones changes during StatefulSet volume creation. However, this is
// probably relatively unlikely because we expect the set of zones to be essentially
// static for clusters.
// Hopefully we can address this problem if/when we do full scheduler integration of
// PVC placement (which could also e.g. avoid putting volumes in overloaded or
// unhealthy zones)
zoneSlice := zones.List()
zone := zoneSlice[(hash+index)%uint32(len(zoneSlice))]
glog.V(2).Infof("Creating volume for PVC %q; chose zone=%q from zones=%q", pvcName, zone, zoneSlice)
return zone
}
// UnmountViaEmptyDir delegates the tear down operation for secret, configmap, git_repo and downwardapi
// to empty_dir
func UnmountViaEmptyDir(dir string, host VolumeHost, volName string, volSpec Spec, podUID types.UID) error {
glog.V(3).Infof("Tearing down volume %v for pod %v at %v", volName, podUID, dir)
if pathExists, pathErr := volutil.PathExists(dir); pathErr != nil {
return fmt.Errorf("Error checking if path exists: %v", pathErr)
} else if !pathExists {
glog.Warningf("Warning: Unmount skipped because path does not exist: %v", dir)
return nil
}
// Wrap EmptyDir, let it do the teardown.
wrapped, err := host.NewWrapperUnmounter(volName, volSpec, podUID)
if err != nil {
return err
}
return wrapped.TearDownAt(dir)
}
// MountOptionFromSpec extracts and joins mount options from volume spec with supplied options
func MountOptionFromSpec(spec *Spec, options ...string) []string {
pv := spec.PersistentVolume
if pv != nil {
if mo, ok := pv.Annotations[MountOptionAnnotation]; ok {
moList := strings.Split(mo, ",")
return JoinMountOptions(moList, options)
}
}
return options
}
// JoinMountOptions joins mount options eliminating duplicates
func JoinMountOptions(userOptions []string, systemOptions []string) []string {
allMountOptions := sets.NewString()
for _, mountOption := range userOptions {
if len(mountOption) > 0 {
allMountOptions.Insert(mountOption)
}
}
for _, mountOption := range systemOptions {
allMountOptions.Insert(mountOption)
}
return allMountOptions.UnsortedList()
}