forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 2
/
nn_test.py
94 lines (76 loc) · 3.07 KB
/
nn_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for nn module."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import itertools
from absl.testing import absltest
from absl.testing import parameterized
import numpy as onp
from jax import test_util as jtu
from jax.test_util import check_grads
from jax import nn
from jax import random
import jax
from jax.config import config
config.parse_flags_with_absl()
class NNFunctionsTest(jtu.JaxTestCase):
def testSoftplusGrad(self):
check_grads(nn.softplus, (1e-8,), 4,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusValue(self):
val = nn.softplus(89.)
self.assertAllClose(val, 89., check_dtypes=False)
def testEluGrad(self):
check_grads(nn.elu, (1e4,), 4, eps=1.)
def testEluValue(self):
val = nn.elu(1e4)
self.assertAllClose(val, 1e4, check_dtypes=False)
InitializerRecord = collections.namedtuple(
"InitializerRecord",
["name", "initializer", "shapes"])
ALL_SHAPES = [(2,), (2, 2), (2, 3), (3, 2), (2, 3, 4), (4, 3, 2), (2, 3, 4, 5)]
def initializer_record(name, initializer, min_dims=2, max_dims=4):
shapes = [shape for shape in ALL_SHAPES
if min_dims <= len(shape) <= max_dims]
return InitializerRecord(name, initializer, shapes)
INITIALIZER_RECS = [
initializer_record("uniform", nn.initializers.uniform(), 1),
initializer_record("normal", nn.initializers.normal(), 1),
initializer_record("he_normal", nn.initializers.he_normal()),
initializer_record("he_uniform", nn.initializers.he_uniform()),
initializer_record("glorot_normal", nn.initializers.glorot_normal()),
initializer_record("glorot_uniform", nn.initializers.glorot_uniform()),
initializer_record("lecun_normal", nn.initializers.lecun_normal()),
initializer_record("lecun_uniform", nn.initializers.lecun_uniform()),
initializer_record("orthogonal", nn.initializers.orthogonal(), 2, 2)
]
class NNInitializersTest(jtu.JaxTestCase):
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_{}_{}".format(
rec.name,
jtu.format_shape_dtype_string(shape, dtype)),
"initializer": rec.initializer,
"shape": shape, "dtype": dtype}
for rec in INITIALIZER_RECS
for shape in rec.shapes
for dtype in [onp.float32, onp.float64]))
def testInitializer(self, initializer, shape, dtype):
rng = random.PRNGKey(0)
val = initializer(rng, shape, dtype)
if __name__ == "__main__":
absltest.main()