forked from kubernetes/kubernetes
-
Notifications
You must be signed in to change notification settings - Fork 1
/
cpu_assignment.go
197 lines (165 loc) · 5.96 KB
/
cpu_assignment.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package cpumanager
import (
"fmt"
"sort"
"github.com/golang/glog"
"k8s.io/kubernetes/pkg/kubelet/cm/cpumanager/topology"
"k8s.io/kubernetes/pkg/kubelet/cm/cpuset"
)
type cpuAccumulator struct {
topo *topology.CPUTopology
details topology.CPUDetails
numCPUsNeeded int
result cpuset.CPUSet
}
func newCPUAccumulator(topo *topology.CPUTopology, availableCPUs cpuset.CPUSet, numCPUs int) *cpuAccumulator {
return &cpuAccumulator{
topo: topo,
details: topo.CPUDetails.KeepOnly(availableCPUs),
numCPUsNeeded: numCPUs,
result: cpuset.NewCPUSet(),
}
}
func (a *cpuAccumulator) take(cpus cpuset.CPUSet) {
a.result = a.result.Union(cpus)
a.details = a.details.KeepOnly(a.details.CPUs().Difference(a.result))
a.numCPUsNeeded -= cpus.Size()
}
// Returns true if the supplied socket is fully available in `topoDetails`.
func (a *cpuAccumulator) isSocketFree(socketID int) bool {
return a.details.CPUsInSocket(socketID).Size() == a.topo.CPUsPerSocket()
}
// Returns true if the supplied core is fully available in `topoDetails`.
func (a *cpuAccumulator) isCoreFree(coreID int) bool {
return a.details.CPUsInCore(coreID).Size() == a.topo.CPUsPerCore()
}
// Returns free socket IDs as a slice sorted by:
// - socket ID, ascending.
func (a *cpuAccumulator) freeSockets() []int {
return a.details.Sockets().Filter(a.isSocketFree).ToSlice()
}
// Returns core IDs as a slice sorted by:
// - the number of whole available cores on the socket, ascending
// - socket ID, ascending
// - core ID, ascending
func (a *cpuAccumulator) freeCores() []int {
socketIDs := a.details.Sockets().ToSlice()
sort.Slice(socketIDs,
func(i, j int) bool {
iCores := a.details.CoresInSocket(socketIDs[i]).Filter(a.isCoreFree)
jCores := a.details.CoresInSocket(socketIDs[j]).Filter(a.isCoreFree)
return iCores.Size() < jCores.Size() || socketIDs[i] < socketIDs[j]
})
coreIDs := []int{}
for _, s := range socketIDs {
coreIDs = append(coreIDs, a.details.CoresInSocket(s).Filter(a.isCoreFree).ToSlice()...)
}
return coreIDs
}
// Returns CPU IDs as a slice sorted by:
// - socket affinity with result
// - number of CPUs available on the same socket
// - number of CPUs available on the same core
// - socket ID.
// - core ID.
func (a *cpuAccumulator) freeCPUs() []int {
result := []int{}
cores := a.details.Cores().ToSlice()
sort.Slice(
cores,
func(i, j int) bool {
iCore := cores[i]
jCore := cores[j]
iCPUs := a.topo.CPUDetails.CPUsInCore(iCore).ToSlice()
jCPUs := a.topo.CPUDetails.CPUsInCore(jCore).ToSlice()
iSocket := a.topo.CPUDetails[iCPUs[0]].SocketID
jSocket := a.topo.CPUDetails[jCPUs[0]].SocketID
// Compute the number of CPUs in the result reside on the same socket
// as each core.
iSocketColoScore := a.topo.CPUDetails.CPUsInSocket(iSocket).Intersection(a.result).Size()
jSocketColoScore := a.topo.CPUDetails.CPUsInSocket(jSocket).Intersection(a.result).Size()
// Compute the number of available CPUs available on the same socket
// as each core.
iSocketFreeScore := a.details.CPUsInSocket(iSocket).Size()
jSocketFreeScore := a.details.CPUsInSocket(jSocket).Size()
// Compute the number of available CPUs on each core.
iCoreFreeScore := a.details.CPUsInCore(iCore).Size()
jCoreFreeScore := a.details.CPUsInCore(jCore).Size()
return iSocketColoScore > jSocketColoScore ||
iSocketFreeScore < jSocketFreeScore ||
iCoreFreeScore < jCoreFreeScore ||
iSocket < jSocket ||
iCore < jCore
})
// For each core, append sorted CPU IDs to result.
for _, core := range cores {
result = append(result, a.details.CPUsInCore(core).ToSlice()...)
}
return result
}
func (a *cpuAccumulator) needs(n int) bool {
return a.numCPUsNeeded >= n
}
func (a *cpuAccumulator) isSatisfied() bool {
return a.numCPUsNeeded < 1
}
func (a *cpuAccumulator) isFailed() bool {
return a.numCPUsNeeded > a.details.CPUs().Size()
}
func takeByTopology(topo *topology.CPUTopology, availableCPUs cpuset.CPUSet, numCPUs int) (cpuset.CPUSet, error) {
acc := newCPUAccumulator(topo, availableCPUs, numCPUs)
if acc.isSatisfied() {
return acc.result, nil
}
if acc.isFailed() {
return cpuset.NewCPUSet(), fmt.Errorf("not enough cpus available to satisfy request")
}
// Algorithm: topology-aware best-fit
// 1. Acquire whole sockets, if available and the container requires at
// least a socket's-worth of CPUs.
for _, s := range acc.freeSockets() {
if acc.needs(acc.topo.CPUsPerSocket()) {
glog.V(4).Infof("[cpumanager] takeByTopology: claiming socket [%d]", s)
acc.take(acc.details.CPUsInSocket(s))
if acc.isSatisfied() {
return acc.result, nil
}
}
}
// 2. Acquire whole cores, if available and the container requires at least
// a core's-worth of CPUs.
for _, c := range acc.freeCores() {
if acc.needs(acc.topo.CPUsPerCore()) {
glog.V(4).Infof("[cpumanager] takeByTopology: claiming core [%d]", c)
acc.take(acc.details.CPUsInCore(c))
if acc.isSatisfied() {
return acc.result, nil
}
}
}
// 3. Acquire single threads, preferring to fill partially-allocated cores
// on the same sockets as the whole cores we have already taken in this
// allocation.
for _, c := range acc.freeCPUs() {
glog.V(4).Infof("[cpumanager] takeByTopology: claiming CPU [%d]", c)
if acc.needs(1) {
acc.take(cpuset.NewCPUSet(c))
}
if acc.isSatisfied() {
return acc.result, nil
}
}
return cpuset.NewCPUSet(), fmt.Errorf("failed to allocate cpus")
}