-
Notifications
You must be signed in to change notification settings - Fork 24
/
tvqa_dataset.py
705 lines (623 loc) · 32.8 KB
/
tvqa_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
from __future__ import absolute_import, division, print_function
import os
import sys
import h5py
import pickle
import numpy as np
import torch
import copy
from easydict import EasyDict as edict
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
from tqdm import tqdm
from utils import load_pickle, load_json, files_exist, get_all_img_ids, computeIoU, \
flat_list_of_lists, match_stanford_tokenizer, load_glove, get_elements_variable_length, dissect_by_lengths
def filter_list_dicts(list_dicts, key, values):
""" filter out the dicts with values for key"""
return [e for e in list_dicts if e[key] in values]
def rm_empty_by_copy(list_array):
"""copy the last non-empty element to replace the empty ones"""
for idx in range(len(list_array)):
if len(list_array[idx]) == 0:
list_array[idx] = list_array[idx-1]
return list_array
class TVQADataset(Dataset):
def __init__(self, opt, mode="train"):
self.opt = opt
self.inference = mode == "test" # inference mode, no GT annotations
self.raw_train = load_json(opt.train_path)
if opt.test_path:
self.raw_test = load_json(opt.test_path)
self.raw_valid = load_json(opt.valid_path)
self.sub_data = load_json(opt.sub_path)
self.sub_flag = "sub" in opt.input_streams
self.vfeat_flag = "vfeat" in opt.input_streams
self.vfeat_type = opt.vfeat_type
self.qa_bert_h5 = h5py.File(opt.qa_bert_path, "r", driver=opt.h5driver) # qid + key
if self.sub_flag:
self.sub_bert_h5 = h5py.File(opt.sub_bert_path, "r", driver=opt.h5driver) # vid_name
if self.vfeat_flag:
self.vid_h5 = h5py.File(opt.vfeat_path, "r", driver=opt.h5driver) # add core
self.vcpt_flag = "vcpt" in opt.input_streams or self.vfeat_flag # if vfeat, must vcpt
if self.vcpt_flag:
self.vcpt_dict = load_pickle(opt.vcpt_path) if opt.vcpt_path.endswith(".pickle") \
else load_json(opt.vcpt_path)
if opt.debug:
self.raw_train = filter_list_dicts(self.raw_train, "vid_name", self.vcpt_dict.keys())
self.raw_valid = filter_list_dicts(self.raw_valid, "vid_name", self.vcpt_dict.keys())
if opt.test_path:
self.raw_test = filter_list_dicts(self.raw_test, "vid_name", self.vcpt_dict.keys())
print("number of training/valid", len(self.raw_train), len(self.raw_valid))
self.glove_embedding_path = opt.glove_path
self.mode = mode
self.num_region = opt.num_region
self.use_sup_att = opt.use_sup_att
self.att_iou_thd = opt.att_iou_thd
self.cur_data_dict = self.get_cur_dict()
# tmp
self.frm_cnt_path = opt.frm_cnt_path
self.frm_cnt_dict = load_json(self.frm_cnt_path)
# build/load vocabulary
self.word2idx_path = opt.word2idx_path
self.embedding_dim = 300
self.word2idx = {"<pad>": 0, "<unk>": 1, "<eos>": 2}
self.idx2word = {0: "<pad>", 1: "<unk>", 2: "<eos>"}
self.offset = len(self.word2idx)
text_keys = ["a0", "a1", "a2", "a3", "a4", "q", "sub_text"]
if not files_exist([self.word2idx_path]):
print("\nNo cache founded.")
self.build_word_vocabulary(text_keys, word_count_threshold=2)
else:
print("\nLoading cache ...")
# self.word2idx = load_pickle(self.word2idx_path)
self.word2idx = load_json(self.word2idx_path)
self.idx2word = {i: w for w, i in self.word2idx.items()}
self.eval_object_vocab = load_json(opt.eval_object_vocab_path)
self.eval_object_word_ids = [self.word2idx[e] if e in self.word2idx else self.word2idx["<unk>"]
for e in self.eval_object_vocab]
def set_mode(self, mode):
self.mode = mode
self.inference = mode == "test"
self.cur_data_dict = self.get_cur_dict()
def get_cur_dict(self):
if self.mode == 'train':
return self.raw_train
elif self.mode == 'valid':
return self.raw_valid
else:
if self.opt.test_path:
return self.raw_test
else:
raise NotImplementedError
def __len__(self):
return len(self.cur_data_dict)
def __getitem__(self, index):
# 0.5 fps mode
items = edict()
items["vid_name"] = self.cur_data_dict[index]["vid_name"]
vid_name = items["vid_name"]
items["qid"] = self.cur_data_dict[index]["qid"]
qid = items["qid"] # int
frm_cnt = self.frm_cnt_dict[vid_name]
located_img_ids = sorted([int(e) for e in self.cur_data_dict[index]["bbox"].keys()])
start_img_id, end_img_id = located_img_ids[0], located_img_ids[-1]
indices, start_idx, end_idx = get_all_img_ids(start_img_id, end_img_id, frm_cnt, frame_interval=6)
items["anno_st_idx"] = start_idx
indices = np.array(indices) - 1 # since the frame (image) index from 1
if "ts" in self.cur_data_dict[index]:
items["ts_label"] = self.get_ts_label(self.cur_data_dict[index]["ts"][0],
self.cur_data_dict[index]["ts"][1],
frm_cnt,
indices,
fps=3)
items["ts"] = self.cur_data_dict[index]["ts"] # [st (float), ed (float)]
else:
items["ts_label"], items["ts"] = [0, 0], None
items["image_indices"] = (indices + 1).tolist()
items["image_indices"] = items["image_indices"]
if self.mode in ["test", "valid"] and self.vfeat_flag:
# add boxes
boxes = self.vcpt_dict[vid_name]["boxes"] # full resolution
lowered_boxes = [boxes[idx][:self.num_region] for idx in indices]
items["boxes"] = lowered_boxes[start_idx:end_idx+1]
else:
items["boxes"] = None
if "answer_idx" in self.cur_data_dict[index]:
# add correct answer
ca_idx = int(self.cur_data_dict[index]["answer_idx"])
items["target"] = ca_idx
ca_l = self.cur_data_dict[index]["a{}_len".format(ca_idx)]
else:
items["target"] = 999 # fake
# add q-answers
answer_keys = ["a0", "a1", "a2", "a3", "a4"]
qa_sentences = [self.numericalize(self.cur_data_dict[index]["q"]
+ " " + self.cur_data_dict[index][k], eos=False) for k in answer_keys]
qa_sentences_bert = [torch.from_numpy(
np.concatenate([self.qa_bert_h5[str(qid) + "_q"], self.qa_bert_h5[str(qid) + "_" + k]], axis=0))
for k in answer_keys]
q_l = self.cur_data_dict[index]["q_len"]
items["q_l"] = q_l
items["qas"] = qa_sentences
items["qas_bert"] = qa_sentences_bert
# add sub
if self.sub_flag:
img_aligned_sub_indices, raw_sub_n_tokens = self.get_aligned_sub_indices(
indices + 1,
self.sub_data[vid_name]["sub_text"],
self.sub_data[vid_name]["sub_time"],
mode="nearest")
try:
sub_bert_embed = dissect_by_lengths(self.sub_bert_h5[vid_name][:], raw_sub_n_tokens, dim=0)
except AssertionError as e: # 35 QAs from 7 videos
sub_bert_embed = dissect_by_lengths(self.sub_bert_h5[vid_name][:], raw_sub_n_tokens,
dim=0, assert_equal=False)
sub_bert_embed = rm_empty_by_copy(sub_bert_embed)
assert len(sub_bert_embed) == len(raw_sub_n_tokens) # we did not truncate when extract embeddings
items["sub_bert"] = [torch.from_numpy(np.concatenate([sub_bert_embed[in_idx] for in_idx in e], axis=0))
for e in img_aligned_sub_indices]
aligned_sub_text = self.get_aligned_sub(self.sub_data[vid_name]["sub_text"],
img_aligned_sub_indices)
items["sub"] = [self.numericalize(e, eos=False) for e in aligned_sub_text]
else:
items["sub_bert"] = [torch.zeros(2, 2)] * 2
items["sub"] = [torch.zeros(2, 2)] * 2
if self.vfeat_flag or self.vcpt_flag:
region_counts = self.vcpt_dict[vid_name]["counts"] # full resolution
localized_lowered_region_counts = \
[min(region_counts[idx], self.num_region) for idx in indices][start_idx:end_idx+1]
# add vcpt
if self.vcpt_flag:
lower_res_obj_labels = get_elements_variable_length(
self.vcpt_dict[vid_name]["object"], indices, cnt_list=None, max_num_region=self.num_region)
obj_labels = lower_res_obj_labels
items["vcpt"] = self.numericalize_hier_vcpt(obj_labels)
items["object_labels"] = obj_labels
else:
items["vcpt"] = [[0, 0], [0, 0]]
# add visual feature
if self.vfeat_flag:
lowered_vfeat = get_elements_variable_length(
self.vid_h5[vid_name][:], indices, cnt_list=region_counts, max_num_region=self.num_region)
cur_vfeat = lowered_vfeat
items["vfeat"] = [torch.from_numpy(e) for e in cur_vfeat]
else:
items["vfeat"] = [torch.zeros(2, 2)] * 2
# add att
if "answer_idx" in self.cur_data_dict[index] and self.use_sup_att and not self.inference and self.vfeat_flag:
q_ca_sentence = self.cur_data_dict[index]["q"] + " " + \
self.cur_data_dict[index]["a{}".format(ca_idx)]
iou_data = self.get_iou_data(self.cur_data_dict[index]["bbox"], self.vcpt_dict[vid_name], frm_cnt)
items["att_labels"] = self.mk_att_label(
iou_data, q_ca_sentence, localized_lowered_region_counts, q_l + ca_l + 1,
iou_thd=self.att_iou_thd, single_box=self.inference)
else:
items["att_labels"] = [torch.zeros(2, 2, 2)] * 2
return items
@classmethod
def get_ts_label(cls, st, ed, num_frame, indices, fps=3):
""" Get temporal supervise signal
Args:
st (float):
ed (float):
num_frame (int):
indices (np.ndarray): fps0.5 indices
fps (int): frame rate used to extract the frames
Returns:
sup_ts_type==`st_ed`: [start_idx, end_idx]
"""
max_num_frame = 300.
if num_frame > max_num_frame:
st, ed = [(max_num_frame / num_frame) * fps * ele for ele in [st, ed]]
else:
st, ed = [fps * ele for ele in [st, ed]]
start_idx = np.searchsorted(indices, st, side="left")
end_idx = np.searchsorted(indices, ed, side="right")
max_len = len(indices)
if not start_idx < max_len:
start_idx -= 1
if not end_idx < max_len:
end_idx -= 1
if start_idx == end_idx:
st_ed = [start_idx, end_idx]
else:
st_ed = [start_idx, end_idx-1] # this is the correct formula
return st_ed # (2, )
@classmethod
def line_to_words(cls, line, eos=True, downcase=True):
eos_word = "<eos>"
words = line.lower().split() if downcase else line.split()
# !!!! remove comma here, since they are too many of them, !!! no removing # TODO
# words = [w for w in words if w != ","]
words = [w for w in words]
words = words + [eos_word] if eos else words
return words
@classmethod
def find_match(cls, subtime, value, mode="larger", span=1.5):
"""closet value in an array to a given value"""
if mode == "nearest": # closet N samples
return sorted((np.abs(subtime - value)).argsort()[:2].tolist())
elif mode == "span": # with a specified time span
return_indices = np.nonzero(np.abs(subtime - value) < span)[0].tolist()
if value <= 2:
return_indices = np.nonzero(subtime - 2 <= 0)[0].tolist() + return_indices
return return_indices
elif mode == "larger":
idx = max(0, np.searchsorted(subtime, value, side="left") - 1)
return_indices = [idx - 1, idx, idx + 1]
return_indices = [idx for idx in return_indices if 0 <= idx < len(subtime)]
return return_indices
@classmethod
def get_aligned_sub_indices(cls, img_ids, subtext, subtime, fps=3, mode="larger"):
""" Get aligned subtitle for each frame, for each frame, use the two subtitle
sentences that are most close to it
Args:
img_ids (list of int): image file ids, note the image index starts from 1. Is one possible???
subtext (str): tokenized subtitle sentences concatenated by "<eos>".
subtime (list of float): a list of timestamps from the subtile file, each marks the start
of each subtile sentence. It should have the same length as the "<eos>" splitted subtext.
fps (int): frame per second when extracting the video
mode (str): nearest or larger
Returns:
a list of str, each str should be aligned with an image indicated by img_ids.
"""
subtext = subtext.split(" <eos> ") # note the spaces
raw_sub_n_tokens = [len(s.split()) for s in subtext]
assert len(subtime) == len(subtext)
img_timestamps = np.array(img_ids) / fps # roughly get the timestamp for the
img_aligned_sentence_indices = [] # list(list)
for t in img_timestamps:
img_aligned_sentence_indices.append(cls.find_match(subtime, t, mode=mode))
return img_aligned_sentence_indices, raw_sub_n_tokens
@classmethod
def get_aligned_sub(cls, subtext, img_aligned_sentence_indices):
subtext = subtext.split(" <eos> ") # note the spaces
return [" ".join([subtext[inner_idx] for inner_idx in e]) for e in img_aligned_sentence_indices]
def mk_noun_mask(self, noun_indices_q, noun_indices_a, q_l, a_l, eos=True):
""" mask is a ndarray (num_q_words + num_ca_words + 1, )
removed nouns that are not in the vocabulary
Args:
noun_indices_q (list): each element is [index, word]
noun_indices_a (list):
q_l (int):
a_l (int):
eos
Returns:
"""
noun_indices_q = [e[0] for e in noun_indices_q if e[1].lower() in self.word2idx]
noun_indices_a = [e[0] + q_l for e in noun_indices_a if e[1].lower() in self.word2idx]
noun_indices = np.array(noun_indices_q + noun_indices_a) - 1
mask = np.zeros(q_l + a_l + 1) if eos else np.zeros(q_l + a_l)
if len(noun_indices) != 0: # seems only 1 instance has no indices
mask[noun_indices] = 1
return mask
@classmethod
def get_labels_single_box(cls, single_box, detected_boxes):
"""return a list of IoUs"""
gt_box = [single_box["left"], single_box["top"],
single_box["left"] + single_box["width"],
single_box["top"] + single_box["height"]] # [left, top, right, bottom]
IoUs = [float("{:.4f}".format(computeIoU(gt_box, d_box))) for d_box in detected_boxes]
return IoUs
def get_iou_data(self, gt_box_data_i, meta_data_i, frm_cnt_i):
"""
meta_data (dict): with vid_name as key,
add iou_data entry, organized similar to bbox_data
"""
frm_cnt_i = frm_cnt_i + 1 # add extra 1 since img_ids are 1-indexed
iou_data_i = {}
img_ids = sorted(gt_box_data_i.keys(), key=lambda x: int(x))
img_ids = [e for e in img_ids if int(e) < frm_cnt_i]
for img_id in img_ids:
iou_data_i[img_id] = []
cur_detected_boxes = meta_data_i["boxes"][int(img_id) - 1]
for box in gt_box_data_i[img_id]:
iou_list = self.get_labels_single_box(box, cur_detected_boxes)
iou_data_i[img_id].append({
"iou": iou_list,
"label": box["label"],
"img_id": img_id
})
return iou_data_i
@classmethod
def mk_att_label(cls, iou_data, q_ca_sentence, region_cnts, ca_len, iou_thd=0.5, single_box=False):
"""return a list(dicts) of length num_imgs, each dict with word indices as keys,
with corresponding region index as values.
iou_data:
q_ca_sentence: q(str) + " " + ca(str)
region_cnts: list(int)
ca_len: int, number of words for the concatenation of question the correct answer, +1 for eos
single_box (bool): return a single object box for each gt box (the one with highest IoU)
"""
img_ids = sorted(iou_data.keys(), key=lambda x: int(x))
q_ca_words = q_ca_sentence.split()
att_label = [np.zeros((ca_len, cnt)) for cnt in region_cnts] # #imgs * (#words, #regions)
for idx, img_id in enumerate(img_ids): # within a single image
cur_img_iou_info = iou_data[img_id]
cur_labels = [e["label"] for e in cur_img_iou_info] # might be upper case
for noun_idx in range(ca_len-1): # do not count <EOS> in
# find the gt boxes (possibly > 1) under the same label
cur_noun = q_ca_words[noun_idx]
cur_box_indices = [box_idx for box_idx, label in enumerate(cur_labels)
if label.lower() == cur_noun.lower()]
# find object boxes that has high IoU with gt boxes, 1 or more for each gt box (single_box)
cur_iou_mask = None
for box_idx in cur_box_indices:
if cur_iou_mask is None:
# why is [:region_cnts[idx]] The cnt here is actually after min(cnt, max_num_regions)
if single_box:
cur_ios_mask_len = len(cur_img_iou_info[box_idx]["iou"][:region_cnts[idx]])
cur_iou_mask = np.zeros(cur_ios_mask_len)
if np.max(cur_img_iou_info[box_idx]["iou"][:region_cnts[idx]]) >= iou_thd:
cur_iou_mask[np.argmax(cur_img_iou_info[box_idx]["iou"][:region_cnts[idx]])] = 1
else:
cur_iou_mask = np.array(cur_img_iou_info[box_idx]["iou"][:region_cnts[idx]]) >= iou_thd
else:
if single_box: # assume the high IoU boxes for the same label will not be the same
if np.max(cur_img_iou_info[box_idx]["iou"][:region_cnts[idx]]) >= iou_thd:
cur_iou_mask[np.argmax(cur_img_iou_info[box_idx]["iou"][:region_cnts[idx]])] = 1
else:
# [True, False] + [True, True] = [True, True]
cur_iou_mask += np.array(cur_img_iou_info[box_idx]["iou"][:region_cnts[idx]]) >= iou_thd
if cur_iou_mask is not None:
# less than num_regions is possible,
# we assume the attention is evenly paid to overlapped boxes
if cur_iou_mask.sum() != 0:
cur_iou_mask = cur_iou_mask.astype(np.float32) / cur_iou_mask.sum() # TODO
att_label[idx][noun_idx] = cur_iou_mask
return [torch.from_numpy(e) for e in att_label] # , att_label_mask
def numericalize(self, sentence, eos=True, match=False):
"""convert words to indices, match stanford tokenizer"""
if match:
sentence = match_stanford_tokenizer(sentence)
sentence_indices = [self.word2idx[w] if w in self.word2idx else self.word2idx["<unk>"]
for w in self.line_to_words(sentence, eos=eos)] # 1 is <unk>, unknown
return sentence_indices
def numericalize_hier_vcpt(self, vcpt_words_list):
"""vcpt_words_list is a list of sublist, each sublist contains words"""
sentence_indices = []
for i in range(len(vcpt_words_list)):
# some labels are 'tennis court', keep the later word
words = [e.split()[-1] for e in vcpt_words_list[i]]
sentence_indices.append([self.word2idx[w] if w in self.word2idx else self.word2idx["<unk>"]
for w in words])
return sentence_indices
def numericalize_vcpt(self, vcpt_sentence):
"""convert words to indices, additionally removes duplicated attr-object pairs"""
attr_obj_pairs = vcpt_sentence.lower().split(",") # comma is also removed
attr_obj_pairs = [e.strip() for e in attr_obj_pairs]
unique_pairs = []
for pair in attr_obj_pairs:
if pair not in unique_pairs:
unique_pairs.append(pair)
words = []
for pair in unique_pairs:
words.extend(pair.split())
words.append("<eos>")
sentence_indices = [self.word2idx[w] if w in self.word2idx else self.word2idx["<unk>"]
for w in words]
return sentence_indices
def build_word_vocabulary(self, text_keys, word_count_threshold=0):
"""
borrowed this implementation from @karpathy's neuraltalk.
"""
print("Building word vocabulary starts.\n")
all_sentences = []
for k in text_keys:
all_sentences.extend(self.raw_train[k])
word_counts = {}
for sentence in all_sentences:
for w in self.line_to_words(sentence, eos=False, downcase=True):
word_counts[w] = word_counts.get(w, 0) + 1
# vocab = [w for w in word_counts if word_counts[w] >= word_count_threshold]
vocab = [w for w in word_counts if word_counts[w] >= word_count_threshold and w not in self.word2idx.keys()]
print("Vocabulary Size %d (<pad> <unk> <eos> excluded) using word_count_threshold %d.\n" %
(len(vocab), word_count_threshold))
# build index and vocabularies
for idx, w in enumerate(vocab):
self.word2idx[w] = idx + self.offset
self.idx2word[idx + self.offset] = w
print("word2idx size: %d, idx2word size: %d.\n" % (len(self.word2idx), len(self.idx2word)))
# Make glove embedding.
print("Loading glove embedding at path : %s.\n" % self.glove_embedding_path)
glove_full = load_glove(self.glove_embedding_path)
print("Glove Loaded, building word2idx, idx2word mapping.\n")
glove_matrix = np.zeros([len(self.idx2word), self.embedding_dim])
glove_keys = glove_full.keys()
for i in tqdm(range(len(self.idx2word))):
w = self.idx2word[i]
w_embed = glove_full[w] if w in glove_keys else np.random.randn(self.embedding_dim) * 0.4
glove_matrix[i, :] = w_embed
self.vocab_embedding = glove_matrix
print("vocab embedding size is :", glove_matrix.shape)
print("Saving cache files at ./cache.\n")
if not os.path.exists("./cache"):
os.makedirs("./cache")
pickle.dump(self.word2idx, open(self.word2idx_path, 'w'))
pickle.dump(self.idx2word, open(self.idx2word_path, 'w'))
pickle.dump(glove_matrix, open(self.vocab_embedding_path, 'w'))
print("Building vocabulary done.\n")
def pad_sequence_3d_label(sequences, sequences_masks):
"""
Args:
sequences: list(3d torch.Tensor)
sequences_masks: list(torch.Tensor) of the same shape as sequences,
individual mask is the result of masking the individual element
Returns:
"""
shapes = [seq.shape for seq in sequences]
lengths_1 = [s[0] for s in shapes]
lengths_2 = [s[1] for s in shapes]
lengths_3 = [s[2] for s in shapes]
padded_seqs = torch.zeros(len(sequences), max(lengths_1), max(lengths_2), max(lengths_3)).float()
mask = copy.deepcopy(padded_seqs)
for idx, seq in enumerate(sequences):
padded_seqs[idx, :lengths_1[idx], :lengths_2[idx], :lengths_3[idx]] = seq
mask[idx, :lengths_1[idx], :lengths_2[idx], :lengths_3[idx]] = sequences_masks[idx]
return padded_seqs, mask
def pad_sequences_2d(sequences, dtype=torch.long):
""" Pad a double-nested list or a sequence of n-d torch tensor into a (n+1)-d tensor,
only allow the first two dims has variable lengths
Args:
sequences: list(n-d tensor or list)
dtype: torch.long for word indices / torch.float (float32) for other cases
Returns:
Examples:
>>> test_data_list = [[[1, 3, 5], [3, 7, 4, 1]], [[98, 34, 11, 89, 90], [22], [34, 56]],]
>>> pad_sequences_2d(test_data_list, dtype=torch.long) # torch.Size([2, 3, 5])
>>> test_data_3d = [torch.randn(2,2,4), torch.randn(4,3,4), torch.randn(1,5,4)]
>>> pad_sequences_2d(test_data_3d, dtype=torch.float) # torch.Size([2, 3, 5])
>>> test_data_3d2 = [[torch.randn(2,4), ], [torch.randn(3,4), torch.randn(5,4)]]
>>> pad_sequences_2d(test_data_3d2, dtype=torch.float) # torch.Size([2, 3, 5])
"""
bsz = len(sequences)
para_lengths = [len(seq) for seq in sequences]
max_para_len = max(para_lengths)
sen_lengths = [[len(word_seq) for word_seq in seq] for seq in sequences]
max_sen_len = max(flat_list_of_lists(sen_lengths))
if isinstance(sequences[0], torch.Tensor):
extra_dims = sequences[0].shape[2:]
elif isinstance(sequences[0][0], torch.Tensor):
extra_dims = sequences[0][0].shape[1:]
else:
sequences = [[torch.LongTensor(word_seq) for word_seq in seq] for seq in sequences]
extra_dims = ()
padded_seqs = torch.zeros((bsz, max_para_len, max_sen_len) + extra_dims, dtype=dtype)
mask = torch.zeros(bsz, max_para_len, max_sen_len).float()
for b_i in range(bsz):
for sen_i, sen_l in enumerate(sen_lengths[b_i]):
padded_seqs[b_i, sen_i, :sen_l] = sequences[b_i][sen_i]
mask[b_i, sen_i, :sen_l] = 1
return padded_seqs, mask # , sen_lengths
def pad_sequences_1d(sequences, dtype=torch.long):
""" Pad a single-nested list or a sequence of n-d torch tensor into a (n+1)-d tensor,
only allow the first dim has variable lengths
Args:
sequences: list(n-d tensor or list)
dtype: torch.long for word indices / torch.float (float32) for other cases
Returns:
padded_seqs: ((n+1)-d tensor) padded with zeros
mask: (2d tensor) of the same shape as the first two dims of padded_seqs,
1 indicate valid, 0 otherwise
Examples:
>>> test_data_list = [[1,2,3], [1,2], [3,4,7,9]]
>>> pad_sequences_1d(test_data_list, dtype=torch.long)
>>> test_data_3d = [torch.randn(2,3,4), torch.randn(4,3,4), torch.randn(1,3,4)]
>>> pad_sequences_1d(test_data_3d, dtype=torch.float)
"""
if isinstance(sequences[0], list):
sequences = [torch.tensor(s, dtype=dtype) for s in sequences]
extra_dims = sequences[0].shape[1:] # the extra dims should be the same for all elements
lengths = [len(seq) for seq in sequences]
padded_seqs = torch.zeros((len(sequences), max(lengths)) + extra_dims, dtype=dtype)
mask = torch.zeros(len(sequences), max(lengths)).float()
for idx, seq in enumerate(sequences):
end = lengths[idx]
padded_seqs[idx, :end] = seq
mask[idx, :end] = 1
return padded_seqs, mask # , lengths
def make_mask_from_length(lengths):
mask = torch.zeros(len(lengths), max(lengths)).float()
for idx, l in enumerate(lengths):
mask[idx, :l] = 1
return mask
def pad_collate(data):
"""Creates mini-batch tensors from the list of tuples (src_seq, trg_seq).
"""
# separate source and target sequences
batch = edict()
batch["qas"], batch["qas_mask"] = pad_sequences_2d([d["qas"] for d in data], dtype=torch.long)
batch["qas_bert"], _ = pad_sequences_2d([d["qas_bert"] for d in data], dtype=torch.float)
batch["sub"], batch["sub_mask"] = pad_sequences_2d([d["sub"] for d in data], dtype=torch.long)
batch["sub_bert"], _ = pad_sequences_2d([d["sub_bert"] for d in data], dtype=torch.float)
batch["vid_name"] = [d["vid_name"] for d in data]
batch["qid"] = [d["qid"] for d in data]
batch["target"] = torch.tensor([d["target"] for d in data], dtype=torch.long)
batch["vcpt"], batch["vcpt_mask"] = pad_sequences_2d([d["vcpt"] for d in data], dtype=torch.long)
batch["vid"], batch["vid_mask"] = pad_sequences_2d([d["vfeat"] for d in data], dtype=torch.float)
# no need to pad these two, since we will break down to instances anyway
batch["att_labels"] = [d["att_labels"] for d in data] # a list, each will be (num_img, num_words)
batch["anno_st_idx"] = [d["anno_st_idx"] for d in data] # list(int)
if data[0]["ts_label"] is None:
batch["ts_label"] = None
elif isinstance(data[0]["ts_label"], list): # (st_ed, ce)
batch["ts_label"] = dict(
st=torch.LongTensor([d["ts_label"][0] for d in data]),
ed=torch.LongTensor([d["ts_label"][1] for d in data]),
)
batch["ts_label_mask"] = make_mask_from_length([len(d["image_indices"]) for d in data])
elif isinstance(data[0]["ts_label"], torch.Tensor): # (st_ed, bce) or frm
batch["ts_label"], batch["ts_label_mask"] = pad_sequences_1d([d["ts_label"] for d in data], dtype=torch.float)
else:
raise NotImplementedError
batch["ts"] = [d["ts"] for d in data]
batch["image_indices"] = [d["image_indices"] for d in data]
batch["q_l"] = [d["q_l"] for d in data]
batch["boxes"] = [d["boxes"] for d in data]
batch["object_labels"] = [d["object_labels"] for d in data]
return batch
def prepare_inputs(batch, max_len_dict=None, device="cuda"):
"""clip and move input data to gpu"""
model_in_dict = edict()
# qas (B, 5, #words, D)
max_qa_l = min(batch["qas"].shape[2], max_len_dict["max_qa_l"])
model_in_dict["qas"] = batch["qas"][:, :, :max_qa_l].to(device)
model_in_dict["qas_bert"] = batch["qas_bert"][:, :, :max_qa_l].to(device)
model_in_dict["qas_mask"] = batch["qas_mask"][:, :, :max_qa_l].to(device)
# (B, #imgs, #words, D)
model_in_dict["sub"] = batch["sub"][:, :max_len_dict["max_vid_l"], :max_len_dict["max_sub_l"]].to(device)
model_in_dict["sub_bert"] = batch["sub_bert"][:, :max_len_dict["max_vid_l"], :max_len_dict["max_sub_l"]].to(device)
model_in_dict["sub_mask"] = batch["sub_mask"][:, :max_len_dict["max_vid_l"], :max_len_dict["max_sub_l"]].to(device)
# context, vid (B, #imgs, #regions, D), vcpt (B, #imgs, #regions)
ctx_keys = ["vid", "vcpt"]
for k in ctx_keys:
max_l = min(batch[k].shape[1], max_len_dict["max_{}_l".format(k)])
model_in_dict[k] = batch[k][:, :max_l].to(device)
mask_key = "{}_mask".format(k)
model_in_dict[mask_key] = batch[mask_key][:, :max_l].to(device)
# att_label (B, #imgs, #qa_words, #regions)
max_att_imgs = min(max([len(d) for d in batch["att_labels"]]), max_len_dict["max_vid_l"])
max_att_words = min(max([d[0].shape[0] for d in batch["att_labels"]]), max_len_dict["max_qa_l"])
model_in_dict["att_labels"] = [[inner_d[:max_att_words].to(device) for inner_d in d[:max_att_imgs]]
for d in batch["att_labels"]]
model_in_dict["anno_st_idx"] = batch["anno_st_idx"]
if batch["ts_label"] is None:
model_in_dict["ts_label"] = None
model_in_dict["ts_label_mask"] = None
elif isinstance(batch["ts_label"], dict): # (st_ed, ce)
model_in_dict["ts_label"] = dict(
st=batch["ts_label"]["st"].to(device),
ed=batch["ts_label"]["ed"].to(device),
)
model_in_dict["ts_label_mask"] = batch["ts_label_mask"][:, :max_len_dict["max_vid_l"]].to(device)
else: # frm-wise or (st_ed, bce)
model_in_dict["ts_label"] = batch["ts_label"][:, :max_len_dict["max_vid_l"]].to(device)
model_in_dict["ts_label_mask"] = batch["ts_label_mask"][:, :max_len_dict["max_vid_l"]].to(device)
# target
model_in_dict["target"] = batch["target"].to(device)
# others
model_in_dict["qid"] = batch["qid"]
model_in_dict["vid_name"] = batch["vid_name"]
targets = model_in_dict["target"]
qids = model_in_dict["qid"]
model_in_dict["ts"] = batch["ts"]
model_in_dict["q_l"] = batch["q_l"]
model_in_dict["image_indices"] = batch["image_indices"]
model_in_dict["boxes"] = batch["boxes"]
model_in_dict["object_labels"] = batch["object_labels"]
return model_in_dict, targets, qids
def find_match(subtime, time_array, mode="larger"):
"""find closet value in an array to a given value
subtime (float):
time_array (np.ndarray): (N, )
"""
if mode == "nearest":
return (np.abs(subtime - time_array)).argsort()[:2].tolist()
elif mode == "larger":
idx = max(0, np.searchsorted(subtime, time_array, side="left") - 1)
return_indices = [idx-1, idx, idx+1]
# return_indices = [idx, idx+1]
return_indices = [idx for idx in return_indices if 0 <= idx < len(subtime)]
return return_indices
else:
raise NotImplementedError