forked from etcd-io/etcd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
node.go
537 lines (477 loc) · 16.1 KB
/
node.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package raft
import (
"errors"
pb "github.com/coreos/etcd/raft/raftpb"
"golang.org/x/net/context"
)
type SnapshotStatus int
const (
SnapshotFinish SnapshotStatus = 1
SnapshotFailure SnapshotStatus = 2
)
var (
emptyState = pb.HardState{}
// ErrStopped is returned by methods on Nodes that have been stopped.
ErrStopped = errors.New("raft: stopped")
)
// SoftState provides state that is useful for logging and debugging.
// The state is volatile and does not need to be persisted to the WAL.
type SoftState struct {
Lead uint64 // must use atomic operations to access; keep 64-bit aligned.
RaftState StateType
}
func (a *SoftState) equal(b *SoftState) bool {
return a.Lead == b.Lead && a.RaftState == b.RaftState
}
// Ready encapsulates the entries and messages that are ready to read,
// be saved to stable storage, committed or sent to other peers.
// All fields in Ready are read-only.
type Ready struct {
// The current volatile state of a Node.
// SoftState will be nil if there is no update.
// It is not required to consume or store SoftState.
*SoftState
// The current state of a Node to be saved to stable storage BEFORE
// Messages are sent.
// HardState will be equal to empty state if there is no update.
pb.HardState
// ReadStates can be used for node to serve linearizable read requests locally
// when its applied index is greater than the index in ReadState.
// Note that the readState will be returned when raft receives msgReadIndex.
// The returned is only valid for the request that requested to read.
ReadStates []ReadState
// Entries specifies entries to be saved to stable storage BEFORE
// Messages are sent.
Entries []pb.Entry
// Snapshot specifies the snapshot to be saved to stable storage.
Snapshot pb.Snapshot
// CommittedEntries specifies entries to be committed to a
// store/state-machine. These have previously been committed to stable
// store.
CommittedEntries []pb.Entry
// Messages specifies outbound messages to be sent AFTER Entries are
// committed to stable storage.
// If it contains a MsgSnap message, the application MUST report back to raft
// when the snapshot has been received or has failed by calling ReportSnapshot.
Messages []pb.Message
// MustSync indicates whether the HardState and Entries must be synchronously
// written to disk or if an asynchronous write is permissible.
MustSync bool
}
func isHardStateEqual(a, b pb.HardState) bool {
return a.Term == b.Term && a.Vote == b.Vote && a.Commit == b.Commit
}
// IsEmptyHardState returns true if the given HardState is empty.
func IsEmptyHardState(st pb.HardState) bool {
return isHardStateEqual(st, emptyState)
}
// IsEmptySnap returns true if the given Snapshot is empty.
func IsEmptySnap(sp pb.Snapshot) bool {
return sp.Metadata.Index == 0
}
func (rd Ready) containsUpdates() bool {
return rd.SoftState != nil || !IsEmptyHardState(rd.HardState) ||
!IsEmptySnap(rd.Snapshot) || len(rd.Entries) > 0 ||
len(rd.CommittedEntries) > 0 || len(rd.Messages) > 0 || len(rd.ReadStates) != 0
}
// Node represents a node in a raft cluster.
type Node interface {
// Tick increments the internal logical clock for the Node by a single tick. Election
// timeouts and heartbeat timeouts are in units of ticks.
Tick()
// Campaign causes the Node to transition to candidate state and start campaigning to become leader.
Campaign(ctx context.Context) error
// Propose proposes that data be appended to the log.
Propose(ctx context.Context, data []byte) error
// ProposeConfChange proposes config change.
// At most one ConfChange can be in the process of going through consensus.
// Application needs to call ApplyConfChange when applying EntryConfChange type entry.
ProposeConfChange(ctx context.Context, cc pb.ConfChange) error
// Step advances the state machine using the given message. ctx.Err() will be returned, if any.
Step(ctx context.Context, msg pb.Message) error
// Ready returns a channel that returns the current point-in-time state.
// Users of the Node must call Advance after retrieving the state returned by Ready.
//
// NOTE: No committed entries from the next Ready may be applied until all committed entries
// and snapshots from the previous one have finished.
Ready() <-chan Ready
// Advance notifies the Node that the application has saved progress up to the last Ready.
// It prepares the node to return the next available Ready.
//
// The application should generally call Advance after it applies the entries in last Ready.
//
// However, as an optimization, the application may call Advance while it is applying the
// commands. For example. when the last Ready contains a snapshot, the application might take
// a long time to apply the snapshot data. To continue receiving Ready without blocking raft
// progress, it can call Advance before finishing applying the last ready.
Advance()
// ApplyConfChange applies config change to the local node.
// Returns an opaque ConfState protobuf which must be recorded
// in snapshots. Will never return nil; it returns a pointer only
// to match MemoryStorage.Compact.
ApplyConfChange(cc pb.ConfChange) *pb.ConfState
// TransferLeadership attempts to transfer leadership to the given transferee.
TransferLeadership(ctx context.Context, lead, transferee uint64)
// ReadIndex request a read state. The read state will be set in the ready.
// Read state has a read index. Once the application advances further than the read
// index, any linearizable read requests issued before the read request can be
// processed safely. The read state will have the same rctx attached.
ReadIndex(ctx context.Context, rctx []byte) error
// Status returns the current status of the raft state machine.
Status() Status
// ReportUnreachable reports the given node is not reachable for the last send.
ReportUnreachable(id uint64)
// ReportSnapshot reports the status of the sent snapshot.
ReportSnapshot(id uint64, status SnapshotStatus)
// Stop performs any necessary termination of the Node.
Stop()
}
type Peer struct {
ID uint64
Context []byte
}
// StartNode returns a new Node given configuration and a list of raft peers.
// It appends a ConfChangeAddNode entry for each given peer to the initial log.
func StartNode(c *Config, peers []Peer) Node {
r := newRaft(c)
// become the follower at term 1 and apply initial configuration
// entries of term 1
r.becomeFollower(1, None)
for _, peer := range peers {
cc := pb.ConfChange{Type: pb.ConfChangeAddNode, NodeID: peer.ID, Context: peer.Context}
d, err := cc.Marshal()
if err != nil {
panic("unexpected marshal error")
}
e := pb.Entry{Type: pb.EntryConfChange, Term: 1, Index: r.raftLog.lastIndex() + 1, Data: d}
r.raftLog.append(e)
}
// Mark these initial entries as committed.
// TODO(bdarnell): These entries are still unstable; do we need to preserve
// the invariant that committed < unstable?
r.raftLog.committed = r.raftLog.lastIndex()
// Now apply them, mainly so that the application can call Campaign
// immediately after StartNode in tests. Note that these nodes will
// be added to raft twice: here and when the application's Ready
// loop calls ApplyConfChange. The calls to addNode must come after
// all calls to raftLog.append so progress.next is set after these
// bootstrapping entries (it is an error if we try to append these
// entries since they have already been committed).
// We do not set raftLog.applied so the application will be able
// to observe all conf changes via Ready.CommittedEntries.
for _, peer := range peers {
r.addNode(peer.ID)
}
n := newNode()
n.logger = c.Logger
go n.run(r)
return &n
}
// RestartNode is similar to StartNode but does not take a list of peers.
// The current membership of the cluster will be restored from the Storage.
// If the caller has an existing state machine, pass in the last log index that
// has been applied to it; otherwise use zero.
func RestartNode(c *Config) Node {
r := newRaft(c)
n := newNode()
n.logger = c.Logger
go n.run(r)
return &n
}
// node is the canonical implementation of the Node interface
type node struct {
propc chan pb.Message
recvc chan pb.Message
confc chan pb.ConfChange
confstatec chan pb.ConfState
readyc chan Ready
advancec chan struct{}
tickc chan struct{}
done chan struct{}
stop chan struct{}
status chan chan Status
logger Logger
}
func newNode() node {
return node{
propc: make(chan pb.Message),
recvc: make(chan pb.Message),
confc: make(chan pb.ConfChange),
confstatec: make(chan pb.ConfState),
readyc: make(chan Ready),
advancec: make(chan struct{}),
// make tickc a buffered chan, so raft node can buffer some ticks when the node
// is busy processing raft messages. Raft node will resume process buffered
// ticks when it becomes idle.
tickc: make(chan struct{}, 128),
done: make(chan struct{}),
stop: make(chan struct{}),
status: make(chan chan Status),
}
}
func (n *node) Stop() {
select {
case n.stop <- struct{}{}:
// Not already stopped, so trigger it
case <-n.done:
// Node has already been stopped - no need to do anything
return
}
// Block until the stop has been acknowledged by run()
<-n.done
}
func (n *node) run(r *raft) {
var propc chan pb.Message
var readyc chan Ready
var advancec chan struct{}
var prevLastUnstablei, prevLastUnstablet uint64
var havePrevLastUnstablei bool
var prevSnapi uint64
var rd Ready
lead := None
prevSoftSt := r.softState()
prevHardSt := emptyState
for {
if advancec != nil {
readyc = nil
} else {
rd = newReady(r, prevSoftSt, prevHardSt)
if rd.containsUpdates() {
readyc = n.readyc
} else {
readyc = nil
}
}
if lead != r.lead {
if r.hasLeader() {
if lead == None {
r.logger.Infof("raft.node: %x elected leader %x at term %d", r.id, r.lead, r.Term)
} else {
r.logger.Infof("raft.node: %x changed leader from %x to %x at term %d", r.id, lead, r.lead, r.Term)
}
propc = n.propc
} else {
r.logger.Infof("raft.node: %x lost leader %x at term %d", r.id, lead, r.Term)
propc = nil
}
lead = r.lead
}
select {
// TODO: maybe buffer the config propose if there exists one (the way
// described in raft dissertation)
// Currently it is dropped in Step silently.
case m := <-propc:
m.From = r.id
r.Step(m)
case m := <-n.recvc:
// filter out response message from unknown From.
if _, ok := r.prs[m.From]; ok || !IsResponseMsg(m.Type) {
r.Step(m) // raft never returns an error
}
case cc := <-n.confc:
if cc.NodeID == None {
r.resetPendingConf()
select {
case n.confstatec <- pb.ConfState{Nodes: r.nodes()}:
case <-n.done:
}
break
}
switch cc.Type {
case pb.ConfChangeAddNode:
r.addNode(cc.NodeID)
case pb.ConfChangeRemoveNode:
// block incoming proposal when local node is
// removed
if cc.NodeID == r.id {
propc = nil
}
r.removeNode(cc.NodeID)
case pb.ConfChangeUpdateNode:
r.resetPendingConf()
default:
panic("unexpected conf type")
}
select {
case n.confstatec <- pb.ConfState{Nodes: r.nodes()}:
case <-n.done:
}
case <-n.tickc:
r.tick()
case readyc <- rd:
if rd.SoftState != nil {
prevSoftSt = rd.SoftState
}
if len(rd.Entries) > 0 {
prevLastUnstablei = rd.Entries[len(rd.Entries)-1].Index
prevLastUnstablet = rd.Entries[len(rd.Entries)-1].Term
havePrevLastUnstablei = true
}
if !IsEmptyHardState(rd.HardState) {
prevHardSt = rd.HardState
}
if !IsEmptySnap(rd.Snapshot) {
prevSnapi = rd.Snapshot.Metadata.Index
}
r.msgs = nil
r.readStates = nil
advancec = n.advancec
case <-advancec:
if prevHardSt.Commit != 0 {
r.raftLog.appliedTo(prevHardSt.Commit)
}
if havePrevLastUnstablei {
r.raftLog.stableTo(prevLastUnstablei, prevLastUnstablet)
havePrevLastUnstablei = false
}
r.raftLog.stableSnapTo(prevSnapi)
advancec = nil
case c := <-n.status:
c <- getStatus(r)
case <-n.stop:
close(n.done)
return
}
}
}
// Tick increments the internal logical clock for this Node. Election timeouts
// and heartbeat timeouts are in units of ticks.
func (n *node) Tick() {
select {
case n.tickc <- struct{}{}:
case <-n.done:
default:
n.logger.Warningf("A tick missed to fire. Node blocks too long!")
}
}
func (n *node) Campaign(ctx context.Context) error { return n.step(ctx, pb.Message{Type: pb.MsgHup}) }
func (n *node) Propose(ctx context.Context, data []byte) error {
return n.step(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}})
}
func (n *node) Step(ctx context.Context, m pb.Message) error {
// ignore unexpected local messages receiving over network
if IsLocalMsg(m.Type) {
// TODO: return an error?
return nil
}
return n.step(ctx, m)
}
func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChange) error {
data, err := cc.Marshal()
if err != nil {
return err
}
return n.Step(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Type: pb.EntryConfChange, Data: data}}})
}
// Step advances the state machine using msgs. The ctx.Err() will be returned,
// if any.
func (n *node) step(ctx context.Context, m pb.Message) error {
ch := n.recvc
if m.Type == pb.MsgProp {
ch = n.propc
}
select {
case ch <- m:
return nil
case <-ctx.Done():
return ctx.Err()
case <-n.done:
return ErrStopped
}
}
func (n *node) Ready() <-chan Ready { return n.readyc }
func (n *node) Advance() {
select {
case n.advancec <- struct{}{}:
case <-n.done:
}
}
func (n *node) ApplyConfChange(cc pb.ConfChange) *pb.ConfState {
var cs pb.ConfState
select {
case n.confc <- cc:
case <-n.done:
}
select {
case cs = <-n.confstatec:
case <-n.done:
}
return &cs
}
func (n *node) Status() Status {
c := make(chan Status)
select {
case n.status <- c:
return <-c
case <-n.done:
return Status{}
}
}
func (n *node) ReportUnreachable(id uint64) {
select {
case n.recvc <- pb.Message{Type: pb.MsgUnreachable, From: id}:
case <-n.done:
}
}
func (n *node) ReportSnapshot(id uint64, status SnapshotStatus) {
rej := status == SnapshotFailure
select {
case n.recvc <- pb.Message{Type: pb.MsgSnapStatus, From: id, Reject: rej}:
case <-n.done:
}
}
func (n *node) TransferLeadership(ctx context.Context, lead, transferee uint64) {
select {
// manually set 'from' and 'to', so that leader can voluntarily transfers its leadership
case n.recvc <- pb.Message{Type: pb.MsgTransferLeader, From: transferee, To: lead}:
case <-n.done:
case <-ctx.Done():
}
}
func (n *node) ReadIndex(ctx context.Context, rctx []byte) error {
return n.step(ctx, pb.Message{Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: rctx}}})
}
func newReady(r *raft, prevSoftSt *SoftState, prevHardSt pb.HardState) Ready {
rd := Ready{
Entries: r.raftLog.unstableEntries(),
CommittedEntries: r.raftLog.nextEnts(),
Messages: r.msgs,
}
if softSt := r.softState(); !softSt.equal(prevSoftSt) {
rd.SoftState = softSt
}
if hardSt := r.hardState(); !isHardStateEqual(hardSt, prevHardSt) {
rd.HardState = hardSt
}
if r.raftLog.unstable.snapshot != nil {
rd.Snapshot = *r.raftLog.unstable.snapshot
}
if len(r.readStates) != 0 {
rd.ReadStates = r.readStates
}
rd.MustSync = MustSync(rd.HardState, prevHardSt, len(rd.Entries))
return rd
}
// MustSync returns true if the hard state and count of Raft entries indicate
// that a synchronous write to persistent storage is required.
func MustSync(st, prevst pb.HardState, entsnum int) bool {
// Persistent state on all servers:
// (Updated on stable storage before responding to RPCs)
// currentTerm
// votedFor
// log entries[]
return entsnum != 0 || st.Vote != prevst.Vote || st.Term != prevst.Term
}