Skip to content

Code for "Category-Level 6D Object Pose and Size Estimation using Self-Supervised Deep Prior Deformation Networks"

License

Notifications You must be signed in to change notification settings

JiehongLin/Self-DPDN

Repository files navigation

Self-Supervised Deep Prior Deformation Network

Code for "Category-Level 6D Object Pose and Size Estimation using Self-Supervised Deep Prior Deformation Networks". ECCV2022.

[Paper] [Arxiv]

Created by Jiehong Lin, Zewei Wei, Changxing Ding, and Kui Jia.

image

News

  • 2023/08: Our another work named VI-Net is accepted by ICCV2023.
  • 2023/07: Codes tested with Pytorch 1.9.0 and CUDA 11.2 are also provided.

Requirements

The code has been tested with

  • python 3.6.5
  • pytorch 1.3.0
  • CUDA 10.2

Some dependent packages:

pip install gorilla-core==0.2.5.6
cd model/pointnet2
python setup.py install

Data Processing

Download the data provided by NOCS (camera_train, camera_test, camera_composed_depths, real_train, real_test, ground truths, and mesh models) and segmentation results (Link), and unzip them in data folder as follows:

data
├── CAMERA
│   ├── train
│   └── val
├── camera_full_depths
│   ├── train
│   └── val
├── Real
│   ├── train
│   └── test
├── gts
│   ├── val
│   └── real_test
├── obj_models
│   ├── train
│   ├── val
│   ├── real_train
│   └── real_test
├── segmentation_results
│   ├── train_trainedwoMask
│   ├── test_trainedwoMask
│   └── test_trainedwithMask
└── mean_shapes.npy

Run the following scripts to prepare the dataset:

python data_processing.py

Training DPDN under Different Settings

Train DPDN under unsupervised setting:

python train.py --gpus 0,1 --config config/unsupervised.yaml

Train DPDN under supervised setting:

python train.py --gpus 0,1 --config config/supervised.yaml

Evaluation

Download trained models and test results [Link]. Evaluate our models under different settings:

python test.py --config config/unsupervised.yaml
python test.py --config config/supervised.yaml

or directly evaluate our results on REAL275 test set:

python test.py --config config/unsupervised.yaml --only_eval
python test.py --config config/supervised.yaml --only_eval

One can also evaluate our models under the easier unsupervised setting with mask labels for segmentation (still without pose annotations):

python test.py --config config/unsupervised.yaml --mask_label

or

python test.py --config config/unsupervised.yaml --mask_label --only_eval

Results

Qualitative results on REAL275 test set:

IoU25 IoU75 5 degree 2 cm 5 degree 5 cm 10 degree 2 cm 10 degree 5 cm
unsupervised 72.6 63.8 37.8 45.5 59.8 71.3
unsupervised (with masks) 83.0 70.3 39.4 45.0 59.8 72.1
supervised 83.4 76.0 46.0 50.7 70.4 78.4

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{lin2022category,
  title={Category-level 6D object pose and size estimation using self-supervised deep prior deformation networks},
  author={Lin, Jiehong and Wei, Zewei and Ding, Changxing and Jia, Kui},
  booktitle={European Conference on Computer Vision},
  pages={19--34},
  year={2022},
  organization={Springer}
}

Acknowledgements

Our implementation leverages the code from NOCS, DualPoseNet, and SPD.

License

Our code is released under MIT License (see LICENSE file for details).

Contact

lin.jiehong@mail.scut.edu.cn

About

Code for "Category-Level 6D Object Pose and Size Estimation using Self-Supervised Deep Prior Deformation Networks"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published