-
Notifications
You must be signed in to change notification settings - Fork 446
/
crf.py
438 lines (382 loc) · 21.3 KB
/
crf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# -*- coding: utf-8 -*-
# @Author: Jie Yang
# @Date: 2017-12-04 23:19:38
# @Last Modified by: Jie Yang, Contact: jieynlp@gmail.com
# @Last Modified time: 2018-12-16 22:15:56
from __future__ import print_function
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
START_TAG = -2
STOP_TAG = -1
# Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(vec, m_size):
"""
calculate log of exp sum
args:
vec (batch_size, vanishing_dim, hidden_dim) : input tensor
m_size : hidden_dim
return:
batch_size, hidden_dim
"""
_, idx = torch.max(vec, 1) # B * 1 * M
max_score = torch.gather(vec, 1, idx.view(-1, 1, m_size)).view(-1, 1, m_size) # B * M
return max_score.view(-1, m_size) + torch.log(torch.sum(torch.exp(vec - max_score.expand_as(vec)), 1)).view(-1, m_size) # B * M
class CRF(nn.Module):
def __init__(self, tagset_size, gpu):
super(CRF, self).__init__()
print("build CRF...")
self.gpu = gpu
# Matrix of transition parameters. Entry i,j is the score of transitioning from i to j.
self.tagset_size = tagset_size
# # We add 2 here, because of START_TAG and STOP_TAG
# # transitions (f_tag_size, t_tag_size), transition value from f_tag to t_tag
init_transitions = torch.zeros(self.tagset_size+2, self.tagset_size+2)
init_transitions[:,START_TAG] = -10000.0
init_transitions[STOP_TAG,:] = -10000.0
init_transitions[:,0] = -10000.0
init_transitions[0,:] = -10000.0
if self.gpu:
init_transitions = init_transitions.cuda()
self.transitions = nn.Parameter(init_transitions)
# self.transitions = nn.Parameter(torch.Tensor(self.tagset_size+2, self.tagset_size+2))
# self.transitions.data.zero_()
def _calculate_PZ(self, feats, mask):
"""
input:
feats: (batch, seq_len, self.tag_size+2)
masks: (batch, seq_len)
"""
batch_size = feats.size(0)
seq_len = feats.size(1)
tag_size = feats.size(2)
# print feats.view(seq_len, tag_size)
assert(tag_size == self.tagset_size+2)
mask = mask.transpose(1,0).contiguous()
ins_num = seq_len * batch_size
## be careful the view shape, it is .view(ins_num, 1, tag_size) but not .view(ins_num, tag_size, 1)
feats = feats.transpose(1,0).contiguous().view(ins_num,1, tag_size).expand(ins_num, tag_size, tag_size)
## need to consider start
scores = feats + self.transitions.view(1,tag_size,tag_size).expand(ins_num, tag_size, tag_size)
scores = scores.view(seq_len, batch_size, tag_size, tag_size)
# build iter
seq_iter = enumerate(scores)
_, inivalues = next(seq_iter) # bat_size * from_target_size * to_target_size
# only need start from start_tag
partition = inivalues[:, START_TAG, :].clone().view(batch_size, tag_size, 1) # bat_size * to_target_size
## add start score (from start to all tag, duplicate to batch_size)
# partition = partition + self.transitions[START_TAG,:].view(1, tag_size, 1).expand(batch_size, tag_size, 1)
# iter over last scores
for idx, cur_values in seq_iter:
# previous to_target is current from_target
# partition: previous results log(exp(from_target)), #(batch_size * from_target)
# cur_values: bat_size * from_target * to_target
cur_values = cur_values + partition.contiguous().view(batch_size, tag_size, 1).expand(batch_size, tag_size, tag_size)
cur_partition = log_sum_exp(cur_values, tag_size)
# print cur_partition.data
# (bat_size * from_target * to_target) -> (bat_size * to_target)
# partition = utils.switch(partition, cur_partition, mask[idx].view(bat_size, 1).expand(bat_size, self.tagset_size)).view(bat_size, -1)
mask_idx = mask[idx, :].view(batch_size, 1).expand(batch_size, tag_size)
## effective updated partition part, only keep the partition value of mask value = 1
masked_cur_partition = cur_partition.masked_select(mask_idx)
## let mask_idx broadcastable, to disable warning
mask_idx = mask_idx.contiguous().view(batch_size, tag_size, 1)
## replace the partition where the maskvalue=1, other partition value keeps the same
partition.masked_scatter_(mask_idx, masked_cur_partition)
# until the last state, add transition score for all partition (and do log_sum_exp) then select the value in STOP_TAG
cur_values = self.transitions.view(1,tag_size, tag_size).expand(batch_size, tag_size, tag_size) + partition.contiguous().view(batch_size, tag_size, 1).expand(batch_size, tag_size, tag_size)
cur_partition = log_sum_exp(cur_values, tag_size)
final_partition = cur_partition[:, STOP_TAG]
return final_partition.sum(), scores
def _viterbi_decode(self, feats, mask):
"""
input:
feats: (batch, seq_len, self.tag_size+2)
mask: (batch, seq_len)
output:
decode_idx: (batch, seq_len) decoded sequence
path_score: (batch, 1) corresponding score for each sequence (to be implementated)
"""
batch_size = feats.size(0)
seq_len = feats.size(1)
tag_size = feats.size(2)
assert(tag_size == self.tagset_size+2)
## calculate sentence length for each sentence
length_mask = torch.sum(mask.long(), dim = 1).view(batch_size,1).long()
## mask to (seq_len, batch_size)
mask = mask.transpose(1,0).contiguous()
ins_num = seq_len * batch_size
## be careful the view shape, it is .view(ins_num, 1, tag_size) but not .view(ins_num, tag_size, 1)
feats = feats.transpose(1,0).contiguous().view(ins_num, 1, tag_size).expand(ins_num, tag_size, tag_size)
## need to consider start
scores = feats + self.transitions.view(1,tag_size,tag_size).expand(ins_num, tag_size, tag_size)
scores = scores.view(seq_len, batch_size, tag_size, tag_size)
# build iter
seq_iter = enumerate(scores)
## record the position of best score
back_points = list()
partition_history = list()
## reverse mask (bug for mask = 1- mask, use this as alternative choice)
# mask = 1 + (-1)*mask
mask = (1 - mask.long()).bool()
_, inivalues = next(seq_iter) # bat_size * from_target_size * to_target_size
# only need start from start_tag
partition = inivalues[:, START_TAG, :].clone().view(batch_size, tag_size) # bat_size * to_target_size
# print "init part:",partition.size()
partition_history.append(partition)
# iter over last scores
for idx, cur_values in seq_iter:
# previous to_target is current from_target
# partition: previous results log(exp(from_target)), #(batch_size * from_target)
# cur_values: batch_size * from_target * to_target
cur_values = cur_values + partition.contiguous().view(batch_size, tag_size, 1).expand(batch_size, tag_size, tag_size)
## forscores, cur_bp = torch.max(cur_values[:,:-2,:], 1) # do not consider START_TAG/STOP_TAG
# print "cur value:", cur_values.size()
partition, cur_bp = torch.max(cur_values, 1)
# print "partsize:",partition.size()
# exit(0)
# print partition
# print cur_bp
# print "one best, ",idx
partition_history.append(partition)
## cur_bp: (batch_size, tag_size) max source score position in current tag
## set padded label as 0, which will be filtered in post processing
cur_bp.masked_fill_(mask[idx].view(batch_size, 1).expand(batch_size, tag_size), 0)
back_points.append(cur_bp)
# exit(0)
### add score to final STOP_TAG
partition_history = torch.cat(partition_history, 0).view(seq_len, batch_size, -1).transpose(1,0).contiguous() ## (batch_size, seq_len. tag_size)
### get the last position for each setences, and select the last partitions using gather()
last_position = length_mask.view(batch_size,1,1).expand(batch_size, 1, tag_size) -1
last_partition = torch.gather(partition_history, 1, last_position).view(batch_size,tag_size,1)
### calculate the score from last partition to end state (and then select the STOP_TAG from it)
last_values = last_partition.expand(batch_size, tag_size, tag_size) + self.transitions.view(1,tag_size, tag_size).expand(batch_size, tag_size, tag_size)
_, last_bp = torch.max(last_values, 1)
pad_zero = autograd.Variable(torch.zeros(batch_size, tag_size)).long()
if self.gpu:
pad_zero = pad_zero.cuda()
back_points.append(pad_zero)
back_points = torch.cat(back_points).view(seq_len, batch_size, tag_size)
## select end ids in STOP_TAG
pointer = last_bp[:, STOP_TAG]
insert_last = pointer.contiguous().view(batch_size,1,1).expand(batch_size,1, tag_size)
back_points = back_points.transpose(1,0).contiguous()
## move the end ids(expand to tag_size) to the corresponding position of back_points to replace the 0 values
# print "lp:",last_position
# print "il:",insert_last
back_points.scatter_(1, last_position, insert_last)
# print "bp:",back_points
# exit(0)
back_points = back_points.transpose(1,0).contiguous()
## decode from the end, padded position ids are 0, which will be filtered if following evaluation
decode_idx = autograd.Variable(torch.LongTensor(seq_len, batch_size))
if self.gpu:
decode_idx = decode_idx.cuda()
decode_idx[-1] = pointer.detach()
for idx in range(len(back_points)-2, -1, -1):
pointer = torch.gather(back_points[idx], 1, pointer.contiguous().view(batch_size, 1))
decode_idx[idx] = pointer.detach().view(batch_size)
path_score = None
decode_idx = decode_idx.transpose(1,0)
return path_score, decode_idx
def forward(self, feats):
path_score, best_path = self._viterbi_decode(feats)
return path_score, best_path
def _score_sentence(self, scores, mask, tags):
"""
input:
scores: variable (seq_len, batch, tag_size, tag_size)
mask: (batch, seq_len)
tags: tensor (batch, seq_len)
output:
score: sum of score for gold sequences within whole batch
"""
# Gives the score of a provided tag sequence
batch_size = scores.size(1)
seq_len = scores.size(0)
tag_size = scores.size(2)
## convert tag value into a new format, recorded label bigram information to index
new_tags = autograd.Variable(torch.LongTensor(batch_size, seq_len))
if self.gpu:
new_tags = new_tags.cuda()
for idx in range(seq_len):
if idx == 0:
## start -> first score
new_tags[:,0] = (tag_size - 2)*tag_size + tags[:,0]
else:
new_tags[:,idx] = tags[:,idx-1]*tag_size + tags[:,idx]
## transition for label to STOP_TAG
end_transition = self.transitions[:,STOP_TAG].contiguous().view(1, tag_size).expand(batch_size, tag_size)
## length for batch, last word position = length - 1
length_mask = torch.sum(mask.long(), dim = 1).view(batch_size,1).long()
## index the label id of last word
end_ids = torch.gather(tags, 1, length_mask - 1)
## index the transition score for end_id to STOP_TAG
end_energy = torch.gather(end_transition, 1, end_ids)
## convert tag as (seq_len, batch_size, 1)
new_tags = new_tags.transpose(1,0).contiguous().view(seq_len, batch_size, 1)
### need convert tags id to search from 400 positions of scores
tg_energy = torch.gather(scores.view(seq_len, batch_size, -1), 2, new_tags).view(seq_len, batch_size) # seq_len * bat_size
## mask transpose to (seq_len, batch_size)
tg_energy = tg_energy.masked_select(mask.transpose(1,0))
# ## calculate the score from START_TAG to first label
# start_transition = self.transitions[START_TAG,:].view(1, tag_size).expand(batch_size, tag_size)
# start_energy = torch.gather(start_transition, 1, tags[0,:])
## add all score together
# gold_score = start_energy.sum() + tg_energy.sum() + end_energy.sum()
gold_score = tg_energy.sum() + end_energy.sum()
return gold_score
def neg_log_likelihood_loss(self, feats, mask, tags):
# nonegative log likelihood
batch_size = feats.size(0)
forward_score, scores = self._calculate_PZ(feats, mask)
gold_score = self._score_sentence(scores, mask, tags)
# print "batch, f:", forward_score.data[0], " g:", gold_score.data[0], " dis:", forward_score.data[0] - gold_score.data[0]
# exit(0)
return forward_score - gold_score
def _viterbi_decode_nbest(self, feats, mask, nbest):
"""
input:
feats: (batch, seq_len, self.tag_size+2)
mask: (batch, seq_len)
output:
decode_idx: (batch, nbest, seq_len) decoded sequence
path_score: (batch, nbest) corresponding score for each sequence (to be implementated)
nbest decode for sentence with one token is not well supported, to be optimized
"""
batch_size = feats.size(0)
seq_len = feats.size(1)
tag_size = feats.size(2)
assert(tag_size == self.tagset_size+2)
## calculate sentence length for each sentence
length_mask = torch.sum(mask.long(), dim = 1).view(batch_size,1).long()
## mask to (seq_len, batch_size)
mask = mask.transpose(1,0).contiguous()
ins_num = seq_len * batch_size
## be careful the view shape, it is .view(ins_num, 1, tag_size) but not .view(ins_num, tag_size, 1)
feats = feats.transpose(1,0).contiguous().view(ins_num, 1, tag_size).expand(ins_num, tag_size, tag_size)
## need to consider start
scores = feats + self.transitions.view(1,tag_size,tag_size).expand(ins_num, tag_size, tag_size)
scores = scores.view(seq_len, batch_size, tag_size, tag_size)
# build iter
seq_iter = enumerate(scores)
## record the position of best score
back_points = list()
partition_history = list()
## reverse mask (bug for mask = 1- mask, use this as alternative choice)
# mask = 1 + (-1)*mask
mask = (1 - mask.long()).bool()
_, inivalues = next(seq_iter) # bat_size * from_target_size * to_target_size
# only need start from start_tag
partition = inivalues[:, START_TAG, :].clone() # bat_size * to_target_size
## initial partition [batch_size, tag_size]
partition_history.append(partition.view(batch_size, tag_size, 1).expand(batch_size, tag_size, nbest))
# iter over last scores
for idx, cur_values in seq_iter:
if idx == 1:
cur_values = cur_values.view(batch_size, tag_size, tag_size) + partition.contiguous().view(batch_size, tag_size, 1).expand(batch_size, tag_size, tag_size)
else:
# previous to_target is current from_target
# partition: previous results log(exp(from_target)), #(batch_size * nbest * from_target)
# cur_values: batch_size * from_target * to_target
cur_values = cur_values.view(batch_size, tag_size, 1, tag_size).expand(batch_size, tag_size, nbest, tag_size) + partition.contiguous().view(batch_size, tag_size, nbest, 1).expand(batch_size, tag_size, nbest, tag_size)
## compare all nbest and all from target
cur_values = cur_values.view(batch_size, tag_size*nbest, tag_size)
# print "cur size:",cur_values.size()
partition, cur_bp = torch.topk(cur_values, nbest, 1)
## cur_bp/partition: [batch_size, nbest, tag_size], id should be normize through nbest in following backtrace step
# print partition[:,0,:]
# print cur_bp[:,0,:]
# print "nbest, ",idx
if idx == 1:
cur_bp = cur_bp*nbest
partition = partition.transpose(2,1)
cur_bp = cur_bp.transpose(2,1)
# print partition
# exit(0)
#partition: (batch_size * to_target * nbest)
#cur_bp: (batch_size * to_target * nbest) Notice the cur_bp number is the whole position of tag_size*nbest, need to convert when decode
partition_history.append(partition)
## cur_bp: (batch_size,nbest, tag_size) topn source score position in current tag
## set padded label as 0, which will be filtered in post processing
## mask[idx] ? mask[idx-1]
cur_bp.masked_fill_(mask[idx].view(batch_size, 1, 1).expand(batch_size, tag_size, nbest), 0)
# print cur_bp[0]
back_points.append(cur_bp)
### add score to final STOP_TAG
partition_history = torch.cat(partition_history,0).view(seq_len, batch_size, tag_size, nbest).transpose(1,0).contiguous() ## (batch_size, seq_len, nbest, tag_size)
### get the last position for each setences, and select the last partitions using gather()
last_position = length_mask.view(batch_size,1,1,1).expand(batch_size, 1, tag_size, nbest) - 1
last_partition = torch.gather(partition_history, 1, last_position).view(batch_size, tag_size, nbest, 1)
### calculate the score from last partition to end state (and then select the STOP_TAG from it)
last_values = last_partition.expand(batch_size, tag_size, nbest, tag_size) + self.transitions.view(1, tag_size, 1, tag_size).expand(batch_size, tag_size, nbest, tag_size)
last_values = last_values.view(batch_size, tag_size*nbest, tag_size)
end_partition, end_bp = torch.topk(last_values, nbest, 1)
## end_partition: (batch, nbest, tag_size)
end_bp = end_bp.transpose(2,1)
# end_bp: (batch, tag_size, nbest)
pad_zero = autograd.Variable(torch.zeros(batch_size, tag_size, nbest)).long()
if self.gpu:
pad_zero = pad_zero.cuda()
back_points.append(pad_zero)
back_points = torch.cat(back_points).view(seq_len, batch_size, tag_size, nbest)
## select end ids in STOP_TAG
pointer = end_bp[:, STOP_TAG, :] ## (batch_size, nbest)
insert_last = pointer.contiguous().view(batch_size, 1, 1, nbest).expand(batch_size, 1, tag_size, nbest)
back_points = back_points.transpose(1,0).contiguous()
## move the end ids(expand to tag_size) to the corresponding position of back_points to replace the 0 values
# print "lp:",last_position
# print "il:",insert_last[0]
# exit(0)
## copy the ids of last position:insert_last to back_points, though the last_position index
## last_position includes the length of batch sentences
# print "old:", back_points[9,0,:,:]
back_points.scatter_(1, last_position, insert_last)
## back_points: [batch_size, seq_length, tag_size, nbest]
# print "new:", back_points[9,0,:,:]
# exit(0)
# print pointer[2]
'''
back_points: in simple demonstratration
x,x,x,x,x,x,x,x,x,7
x,x,x,x,x,4,0,0,0,0
x,x,6,0,0,0,0,0,0,0
'''
back_points = back_points.transpose(1,0).contiguous()
# print back_points[0]
## back_points: (seq_len, batch, tag_size, nbest)
## decode from the end, padded position ids are 0, which will be filtered in following evaluation
decode_idx = autograd.Variable(torch.LongTensor(seq_len, batch_size, nbest))
if self.gpu:
decode_idx = decode_idx.cuda()
decode_idx[-1] = pointer.data/nbest
# print "pointer-1:",pointer[2]
# exit(0)
# use old mask, let 0 means has token
for idx in range(len(back_points)-2, -1, -1):
# print "pointer: ",idx, pointer[3]
# print "back:",back_points[idx][3]
# print "mask:",mask[idx+1,3]
new_pointer = torch.gather(back_points[idx].view(batch_size, tag_size*nbest), 1, pointer.contiguous().view(batch_size,nbest))
decode_idx[idx] = new_pointer.data/nbest
# # use new pointer to remember the last end nbest ids for non longest
pointer = new_pointer + pointer.contiguous().view(batch_size,nbest)*mask[idx].view(batch_size,1).expand(batch_size, nbest).long()
# exit(0)
path_score = None
decode_idx = decode_idx.transpose(1,0)
## decode_idx: [batch, seq_len, nbest]
# print decode_idx[:,:,0]
# print "nbest:",nbest
# print "diff:", decode_idx[:,:,0]- decode_idx[:,:,4]
# print decode_idx[:,0,:]
# exit(0)
### calculate probability for each sequence
scores = end_partition[:, :, STOP_TAG]
## scores: [batch_size, nbest]
max_scores,_ = torch.max(scores, 1)
minus_scores = scores - max_scores.view(batch_size,1).expand(batch_size, nbest)
path_score = F.softmax(minus_scores, 1)
## path_score: [batch_size, nbest]
# exit(0)
return path_score, decode_idx