We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
个人理解,MMD距离应该是描述分布的“距离”,而不是分布中单个数据采样点的。 在深度学习里使用,就类似batch size的批处理,从分布中期望做到均匀采样。 但DeepDA下main.py 中line 132 似乎只是单纯个体数据间的距离 loss
这样不会受到采样点的影响吗?还是说任务base model 提取特征后,认为特征在特征空间就是均匀的
The text was updated successfully, but these errors were encountered:
这个是实现和理想的差异:在深度学习里面只能这么实现。
Sorry, something went wrong.
No branches or pull requests
个人理解,MMD距离应该是描述分布的“距离”,而不是分布中单个数据采样点的。
在深度学习里使用,就类似batch size的批处理,从分布中期望做到均匀采样。
但DeepDA下main.py 中line 132 似乎只是单纯个体数据间的距离 loss
这样不会受到采样点的影响吗?还是说任务base model 提取特征后,认为特征在特征空间就是均匀的
The text was updated successfully, but these errors were encountered: