Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

学生咨询 #1

Open
xiaomingdujin opened this issue Sep 25, 2017 · 1 comment
Open

学生咨询 #1

xiaomingdujin opened this issue Sep 25, 2017 · 1 comment

Comments

@xiaomingdujin
Copy link

xiaomingdujin commented Sep 25, 2017

您好

有个问题想问您一下,用Unlabeled Data之后,再用labeled Data时训练是进行一个网络参数的微调吗?
我个人理解思路是使用未标记图像训练,然后用标记图像进行训练调整网络参数,这样就扩充了训练样本,感觉是个很好的思路,受到您的启发,不知道我理解的对不对
但是如果未标记图像训练时标记为16类,那这16类是怎么得到的呢,和待验证图像的类别会不会差别大,毕竟未标记图像和待测试图像可能来自不同传感器,如果使用相同传感器的未标签图像来预训练会不会好一点。
以上纯属个人浅显的想法。
不好意思,多有打扰,祝好

@jingge326
Copy link
Owner

您好
抱歉没有及时看到您的消息
不需要对未标记样本标记类别。该网络从原理上讲其实是一个自编码器,未标记数据的作用是构造这个编码器,端对端训练就行,输入与输出误差最小化,不需要标记类别。之后用少量标记样本微调。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants