forked from NVlabs/stylegan2-ada
-
Notifications
You must be signed in to change notification settings - Fork 4
/
projector.py
executable file
·289 lines (245 loc) · 12.2 KB
/
projector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Project given image to the latent space of pretrained network pickle."""
import argparse
import os
import pickle
import imageio
import numpy as np
import PIL.Image
import tensorflow as tf
import tqdm
import dnnlib
import dnnlib.tflib as tflib
class Projector:
def __init__(self):
self.num_steps = 1000
self.dlatent_avg_samples = 10000
self.initial_learning_rate = 0.1
self.initial_noise_factor = 0.05
self.lr_rampdown_length = 0.25
self.lr_rampup_length = 0.05
self.noise_ramp_length = 0.75
self.regularize_noise_weight = 1e5
self.verbose = True
self._Gs = None
self._minibatch_size = None
self._dlatent_avg = None
self._dlatent_std = None
self._noise_vars = None
self._noise_init_op = None
self._noise_normalize_op = None
self._dlatents_var = None
self._dlatent_noise_in = None
self._dlatents_expr = None
self._images_float_expr = None
self._images_uint8_expr = None
self._target_images_var = None
self._lpips = None
self._dist = None
self._loss = None
self._reg_sizes = None
self._lrate_in = None
self._opt = None
self._opt_step = None
self._cur_step = None
def _info(self, *args):
if self.verbose:
print('Projector:', *args)
def set_network(self, Gs, dtype='float16'):
if Gs is None:
self._Gs = None
return
self._Gs = Gs.clone(randomize_noise=False, dtype=dtype, num_fp16_res=0, fused_modconv=True)
# Compute dlatent stats.
self._info(f'Computing W midpoint and stddev using {self.dlatent_avg_samples} samples...')
latent_samples = np.random.RandomState(123).randn(self.dlatent_avg_samples, *self._Gs.input_shapes[0][1:])
dlatent_samples = self._Gs.components.mapping.run(latent_samples, None) # [N, L, C]
dlatent_samples = dlatent_samples[:, :1, :].astype(np.float32) # [N, 1, C]
self._dlatent_avg = np.mean(dlatent_samples, axis=0, keepdims=True) # [1, 1, C]
self._dlatent_std = (np.sum((dlatent_samples - self._dlatent_avg) ** 2) / self.dlatent_avg_samples) ** 0.5
self._info(f'std = {self._dlatent_std:g}')
# Setup noise inputs.
self._info('Setting up noise inputs...')
self._noise_vars = []
noise_init_ops = []
noise_normalize_ops = []
while True:
n = f'G_synthesis/noise{len(self._noise_vars)}'
if not n in self._Gs.vars:
break
v = self._Gs.vars[n]
self._noise_vars.append(v)
noise_init_ops.append(tf.assign(v, tf.random_normal(tf.shape(v), dtype=tf.float32)))
noise_mean = tf.reduce_mean(v)
noise_std = tf.reduce_mean((v - noise_mean)**2)**0.5
noise_normalize_ops.append(tf.assign(v, (v - noise_mean) / noise_std))
self._noise_init_op = tf.group(*noise_init_ops)
self._noise_normalize_op = tf.group(*noise_normalize_ops)
# Build image output graph.
self._info('Building image output graph...')
self._minibatch_size = 1
self._dlatents_var = tf.Variable(tf.zeros([self._minibatch_size] + list(self._dlatent_avg.shape[1:])), name='dlatents_var')
self._dlatent_noise_in = tf.placeholder(tf.float32, [], name='noise_in')
dlatents_noise = tf.random.normal(shape=self._dlatents_var.shape) * self._dlatent_noise_in
self._dlatents_expr = tf.tile(self._dlatents_var + dlatents_noise, [1, self._Gs.components.synthesis.input_shape[1], 1])
self._images_float_expr = tf.cast(self._Gs.components.synthesis.get_output_for(self._dlatents_expr), tf.float32)
self._images_uint8_expr = tflib.convert_images_to_uint8(self._images_float_expr, nchw_to_nhwc=True)
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
proc_images_expr = (self._images_float_expr + 1) * (255 / 2)
sh = proc_images_expr.shape.as_list()
if sh[2] > 256:
factor = sh[2] // 256
proc_images_expr = tf.reduce_mean(tf.reshape(proc_images_expr, [-1, sh[1], sh[2] // factor, factor, sh[2] // factor, factor]), axis=[3,5])
# Build loss graph.
self._info('Building loss graph...')
self._target_images_var = tf.Variable(tf.zeros(proc_images_expr.shape), name='target_images_var')
if self._lpips is None:
with dnnlib.util.open_url('https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/metrics/vgg16_zhang_perceptual.pkl') as f:
self._lpips = pickle.load(f)
self._dist = self._lpips.get_output_for(proc_images_expr, self._target_images_var)
self._loss = tf.reduce_sum(self._dist)
# Build noise regularization graph.
self._info('Building noise regularization graph...')
reg_loss = 0.0
for v in self._noise_vars:
sz = v.shape[2]
while True:
reg_loss += tf.reduce_mean(v * tf.roll(v, shift=1, axis=3))**2 + tf.reduce_mean(v * tf.roll(v, shift=1, axis=2))**2
if sz <= 8:
break # Small enough already
v = tf.reshape(v, [1, 1, sz//2, 2, sz//2, 2]) # Downscale
v = tf.reduce_mean(v, axis=[3, 5])
sz = sz // 2
self._loss += reg_loss * self.regularize_noise_weight
# Setup optimizer.
self._info('Setting up optimizer...')
self._lrate_in = tf.placeholder(tf.float32, [], name='lrate_in')
self._opt = tflib.Optimizer(learning_rate=self._lrate_in)
self._opt.register_gradients(self._loss, [self._dlatents_var] + self._noise_vars)
self._opt_step = self._opt.apply_updates()
def start(self, target_images):
assert self._Gs is not None
# Prepare target images.
self._info('Preparing target images...')
target_images = np.asarray(target_images, dtype='float32')
target_images = (target_images + 1) * (255 / 2)
sh = target_images.shape
assert sh[0] == self._minibatch_size
if sh[2] > self._target_images_var.shape[2]:
factor = sh[2] // self._target_images_var.shape[2]
target_images = np.reshape(target_images, [-1, sh[1], sh[2] // factor, factor, sh[3] // factor, factor]).mean((3, 5))
# Initialize optimization state.
self._info('Initializing optimization state...')
dlatents = np.tile(self._dlatent_avg, [self._minibatch_size, 1, 1])
tflib.set_vars({self._target_images_var: target_images, self._dlatents_var: dlatents})
tflib.run(self._noise_init_op)
self._opt.reset_optimizer_state()
self._cur_step = 0
def step(self):
assert self._cur_step is not None
if self._cur_step >= self.num_steps:
return 0, 0
# Choose hyperparameters.
t = self._cur_step / self.num_steps
dlatent_noise = self._dlatent_std * self.initial_noise_factor * max(0.0, 1.0 - t / self.noise_ramp_length) ** 2
lr_ramp = min(1.0, (1.0 - t) / self.lr_rampdown_length)
lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
lr_ramp = lr_ramp * min(1.0, t / self.lr_rampup_length)
learning_rate = self.initial_learning_rate * lr_ramp
# Execute optimization step.
feed_dict = {self._dlatent_noise_in: dlatent_noise, self._lrate_in: learning_rate}
_, dist_value, loss_value = tflib.run([self._opt_step, self._dist, self._loss], feed_dict)
tflib.run(self._noise_normalize_op)
self._cur_step += 1
return dist_value, loss_value
@property
def cur_step(self):
return self._cur_step
@property
def dlatents(self):
return tflib.run(self._dlatents_expr, {self._dlatent_noise_in: 0})
@property
def noises(self):
return tflib.run(self._noise_vars)
@property
def images_float(self):
return tflib.run(self._images_float_expr, {self._dlatent_noise_in: 0})
@property
def images_uint8(self):
return tflib.run(self._images_uint8_expr, {self._dlatent_noise_in: 0})
#----------------------------------------------------------------------------
def project(network_pkl: str, target_fname: str, outdir: str, save_video: bool, seed: int):
# Load networks.
tflib.init_tf({'rnd.np_random_seed': seed})
print('Loading networks from "%s"...' % network_pkl)
with dnnlib.util.open_url(network_pkl) as fp:
_G, _D, Gs = pickle.load(fp)
# Load target image.
target_pil = PIL.Image.open(target_fname)
w, h = target_pil.size
s = min(w, h)
target_pil = target_pil.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
target_pil= target_pil.convert('RGB')
target_pil = target_pil.resize((Gs.output_shape[3], Gs.output_shape[2]), PIL.Image.ANTIALIAS)
target_uint8 = np.array(target_pil, dtype=np.uint8)
target_float = target_uint8.astype(np.float32).transpose([2, 0, 1]) * (2 / 255) - 1
# Initialize projector.
proj = Projector()
proj.set_network(Gs)
proj.start([target_float])
# Setup output directory.
os.makedirs(outdir, exist_ok=True)
target_pil.save(f'{outdir}/target.png')
writer = None
if save_video:
writer = imageio.get_writer(f'{outdir}/proj.mp4', mode='I', fps=60, codec='libx264', bitrate='16M')
# Run projector.
with tqdm.trange(proj.num_steps) as t:
for step in t:
assert step == proj.cur_step
if writer is not None:
writer.append_data(np.concatenate([target_uint8, proj.images_uint8[0]], axis=1))
dist, loss = proj.step()
t.set_postfix(dist=f'{dist[0]:.4f}', loss=f'{loss:.2f}')
# Save results.
PIL.Image.fromarray(proj.images_uint8[0], 'RGB').save(f'{outdir}/proj.png')
np.savez(f'{outdir}/dlatents.npz', dlatents=proj.dlatents)
if writer is not None:
writer.close()
#----------------------------------------------------------------------------
def _str_to_bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
if v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
raise argparse.ArgumentTypeError('Boolean value expected.')
#----------------------------------------------------------------------------
_examples = '''examples:
python %(prog)s --outdir=out --target=targetimg.png \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/ffhq.pkl
'''
#----------------------------------------------------------------------------
def main():
parser = argparse.ArgumentParser(
description='Project given image to the latent space of pretrained network pickle.',
epilog=_examples,
formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument('--network', help='Network pickle filename', dest='network_pkl', required=True)
parser.add_argument('--target', help='Target image file to project to', dest='target_fname', required=True)
parser.add_argument('--save-video', help='Save an mp4 video of optimization progress (default: true)', type=_str_to_bool, default=True)
parser.add_argument('--seed', help='Random seed', type=int, default=303)
parser.add_argument('--outdir', help='Where to save the output images', required=True, metavar='DIR')
project(**vars(parser.parse_args()))
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------