-
Notifications
You must be signed in to change notification settings - Fork 6
/
main.py
245 lines (209 loc) · 8.27 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
'''Train CIFAR10 with PyTorch.'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
import random
import numpy as np
from models import *
from loader import Loader, Loader2
from utils import progress_bar
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
testset = Loader(is_train=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
# Model
print('==> Building model..')
net = ResNet18()
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
# Training
def train(net, criterion, optimizer, epoch, trainloader):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def test(net, criterion, epoch, cycle):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, f'./checkpoint/main_{cycle}.pth')
best_acc = acc
# class-balanced sampling (pseudo labeling)
def get_plabels(net, samples, cycle):
# dictionary with 10 keys as class labels
class_dict = {}
[class_dict.setdefault(x,[]) for x in range(10)]
sub5k = Loader2(is_train=False, transform=transform_test, path_list=samples)
ploader = torch.utils.data.DataLoader(sub5k, batch_size=1, shuffle=False, num_workers=2)
# overflow goes into remaining
remaining = []
net.eval()
with torch.no_grad():
for idx, (inputs, targets) in enumerate(ploader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
_, predicted = outputs.max(1)
if len(class_dict[predicted.item()]) < 100:
class_dict[predicted.item()].append(samples[idx])
else:
remaining.append(samples[idx])
progress_bar(idx, len(ploader))
sample1k = []
for items in class_dict.values():
if len(items) == 100:
sample1k.extend(items)
else:
# supplement samples from remaining
sample1k.extend(items)
add = 100 - len(items)
sample1k.extend(remaining[:add])
remaining = remaining[add:]
return sample1k
# confidence sampling (pseudo labeling)
## return 1k samples w/ lowest top1 score
def get_plabels2(net, samples, cycle):
# dictionary with 10 keys as class labels
class_dict = {}
[class_dict.setdefault(x,[]) for x in range(10)]
sample1k = []
sub5k = Loader2(is_train=False, transform=transform_test, path_list=samples)
ploader = torch.utils.data.DataLoader(sub5k, batch_size=1, shuffle=False, num_workers=2)
top1_scores = []
net.eval()
with torch.no_grad():
for idx, (inputs, targets) in enumerate(ploader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
scores, predicted = outputs.max(1)
# save top1 confidence score
outputs = F.normalize(outputs, dim=1)
probs = F.softmax(outputs, dim=1)
top1_scores.append(probs[0][predicted.item()])
progress_bar(idx, len(ploader))
idx = np.argsort(top1_scores)
samples = np.array(samples)
return samples[idx[:1000]]
# entropy sampling
def get_plabels3(net, samples, cycle):
sample1k = []
sub5k = Loader2(is_train=False, transform=transform_test, path_list=samples)
ploader = torch.utils.data.DataLoader(sub5k, batch_size=1, shuffle=False, num_workers=2)
top1_scores = []
net.eval()
with torch.no_grad():
for idx, (inputs, targets) in enumerate(ploader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
e = -1.0 * torch.sum(F.softmax(outputs, dim=1) * F.log_softmax(outputs, dim=1), dim=1)
top1_scores.append(e.view(e.size(0)))
progress_bar(idx, len(ploader))
idx = np.argsort(top1_scores)
samples = np.array(samples)
return samples[idx[-1000:]]
def get_classdist(samples):
class_dist = np.zeros(10)
for sample in samples:
label = int(sample.split('/')[-2])
class_dist[label] += 1
return class_dist
if __name__ == '__main__':
labeled = []
CYCLES = 10
for cycle in range(CYCLES):
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1,momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[160])
best_acc = 0
print('Cycle ', cycle)
# open 5k batch (sorted low->high)
with open(f'./loss/batch_{cycle}.txt', 'r') as f:
samples = f.readlines()
if cycle > 0:
print('>> Getting previous checkpoint')
# prevnet = ResNet18().to(device)
# prevnet = torch.nn.DataParallel(prevnet)
checkpoint = torch.load(f'./checkpoint/main_{cycle-1}.pth')
net.load_state_dict(checkpoint['net'])
# sampling
sample1k = get_plabels2(net, samples, cycle)
else:
# first iteration: sample 1k at even intervals
samples = np.array(samples)
sample1k = samples[[j*5 for j in range(1000)]]
# add 1k samples to labeled set
labeled.extend(sample1k)
print(f'>> Labeled length: {len(labeled)}')
trainset = Loader2(is_train=True, transform=transform_train, path_list=labeled)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
for epoch in range(200):
train(net, criterion, optimizer, epoch, trainloader)
test(net, criterion, epoch, cycle)
scheduler.step()
with open(f'./main_best.txt', 'a') as f:
f.write(str(cycle) + ' ' + str(best_acc)+'\n')