Skip to content

Latest commit

 

History

History
27 lines (17 loc) · 2.56 KB

README.md

File metadata and controls

27 lines (17 loc) · 2.56 KB

Exploratory analysis with Rio Grande do Sul's town hall expenses for detecting fraudulent purchases (with Python and NLP)

Hi there!

For this analysis, I've divided my studies into three main jupyter notebooks (Analise_1_TCE-RS, Analise_2_TCE-RS and Analise_3_TCE-RS, respectively) containing analysis from all city's purchaces (licitacao.csv) and all registered items (item.csv) from 2016 to 2021. I've focused mainly on these two files only for a brief exploratory analysis and I've let my considerations and conclusions available inside the notebooks through my discorery process.

The entire analysis dured only 48 hours, but if I had more time I would definitely improve the following points:

  1. Since we're working with large datasets, I would've created a Entity–relationship model with the provided databases and search all data with SQL queries for time improvement;
  2. Create/implement a classification/clustering model with NLP to organise purchases descriptions in a more concise way, since we're working with chunks of text - creating a K-Means/Naive Bayes classifier would be a good starting point;
  3. Create more predictive analysis (tendency and seasonality analysis) from purchases by organ with a linear regression model;

Hope y'all enjoy 😄


Olá!

Para esta avaliação, dividi minha análise em três etapas em arquivos separados (Analise_1_TCE-RS, Analise_2_TCE-RS e Analise_3_TCE-RS respectivamente), contendo análises nos arquivos de licitações (licitacao.csv) e de itens registrados (item.csv) nos anos fornecidos. Mantive o foco apenas nestes dois arquivos com ênfase na análise exploratória e deixei minhas considerações e conclusões nos notebooks conforme desenvolvia minha linha de raciocínio.

Como pontos de melhoria, acredito que com mais tempo hábil poderia desenvolver os seguintes pontos:

  1. Estruturação completa de um modelo entidade-relacionamento com as bases fornecidas, buscando por informações relevantes também nos outros arquivos disponíveis;
  2. Criação/implementação de um algoritmo de classificação/clustering de texto com NLP para organizar as descrições dos objetos de maneira mais organizada, visto que é um campo dissertativo - com isso seria possível identificarmos as compras de licitações a nível de componentes/produtos e gerar novos insights;
  3. Criação de análises preditivas (análise de tendência) de objetos licitatórios por orgão a partir de um modelo de regressão linear;
  4. Maior estudo do processo em si para melhor entendimento para poder gerar KPIs de maior valor.

Espero que gostem! 😄