-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensor_conversion_03.py
126 lines (108 loc) · 5.17 KB
/
tensor_conversion_03.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"""
Project: Object detector and segmentation tutorial https://github.com/juancarlosmiranda/object_detector_tutorial
Author: Juan Carlos Miranda. https://github.com/juancarlosmiranda
Date: February 2021
Description:
Sample code from the TorchVision 0.3 Object Detection Finetuning Tutorial. http://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
Explained by David Macedo.
https://github.com/dlmacedo/starter-academic/blob/master/content/courses/deeplearning/notebooks/pytorch/finetuning_torchvision_models_tutorial.ipynb
Adapted by Juan Carlos Miranda as a programming practice, February 2021.
Use:
"""
import os
import time
import torch
# Managing images formats
import cv2
from PIL import Image
import torchvision.transforms.functional as F
from helpers.helper_examples import merge_masks
# Deep learning models
# https://pytorch.org/vision/main/auto_examples/plot_visualization_utils.html#instance-seg-output
from torchvision.models.detection import maskrcnn_resnet50_fpn
def tensor_conversion_03():
print('------------------------------------')
print('MAIN STORY OBJECT DETECTION EVALUATION')
print('------------------------------------')
main_path_project = os.path.abspath('.')
device_selected = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# -------------------------------------------
# Datasets
# -------------------------------------------
dataset_folder = os.path.join('dataset', 'testing_performance')
path_dataset = os.path.join(main_path_project, dataset_folder)
path_images_folder = 'images'
path_dataset_images = os.path.join(path_dataset, path_images_folder)
# -------------------------------------------
# Open image with Pillow.Image.open() and torchvision.io.read_image()
# -------------------------------------------
img_to_eval_name = '20210927_114012_k_r2_e_000_150_138_2_0_C.png'
img_to_eval_name = '20210523_red_cross.png'
#img_to_eval_name = 'PATT_01_MIRANDA.png'
path_img_to_eval = os.path.join(path_dataset_images, img_to_eval_name)
cv_img_to_eval = cv2.imread(path_img_to_eval) # ndarray:(H,W, 3)
img_to_eval_float32 = F.to_tensor(cv_img_to_eval)
img_to_eval_list = [img_to_eval_float32.to(device_selected)]
cv_new_img = img_to_eval_float32.mul(255).permute(1, 2, 0).detach().cpu().byte().numpy()
#cv2.imshow('showing with cv2', cv_new_img)
#cv2.waitKey()
# ------------------------------------------
# Model initialization for object prediction
# -------------------------------------------
score_threshold = 0.6
start_time_model_load = time.time()
model = maskrcnn_resnet50_fpn(pretrained=True)
model.to(device_selected)
model.eval() # enabling evaluation mode
end_time_model_load = time.time()
# ----------------------------
# -------------------------------------
# Image evaluation with model
# -------------------------------------
start_time_eval = time.time() # this is the evaluation
with torch.no_grad():
predictions_model = model(img_to_eval_list) # todo:? why []?
end_time_eval = time.time()
# -------------------------------------
# Managing prediction, making something here (filtering, extracting)
# -------------------------------------
pred_scores = predictions_model[0]['scores'].detach().cpu().numpy()
pred_masks = predictions_model[0]['masks']
# -------------------------------------
# Filtering predictions according to rules
# -------------------------------------
masks_filtered = pred_masks[pred_scores >= score_threshold]
final_masks = masks_filtered > 0.5 # to clean bad pixels
final_masks = final_masks.squeeze(1) # ?
# -------------------------------------
# It displays the results on the screen according to the colours.
# -------------------------------------
# Display with PIL.Image
merged_masks = merge_masks(final_masks)
merged_binary_img = Image.fromarray(merged_masks.mul(255).byte().cpu().numpy())
merged_binary_img.show('binary mask to show')
# Display with OpenCV
cv_merged_binary_img = merged_masks.mul(255).byte().cpu().numpy()
cv2.imshow('binary mask to show cv2', cv_merged_binary_img)
cv2.waitKey()
# -------------------------------------
# Display data on screen
# -------------------------------------
total_time_model_load = end_time_model_load - start_time_model_load
total_time_eval = end_time_eval - start_time_eval
process_time_eval = total_time_model_load + total_time_eval
w, h, channel = cv_img_to_eval.shape
print('------------------------------------')
print(f'Main parameters')
print('------------------------------------')
print(f'path_dataset_images={path_dataset_images}')
print(f'path_img_to_evaluate_01={path_img_to_eval}')
print(f'Image size width={w} height={h}')
print(f'device_selected={device_selected}')
print(f'score_threshold={score_threshold}')
print(f'model={type(model).__name__}')
print(f'total_time_model_load={total_time_model_load}')
print(f'total_time_eval={total_time_eval}')
print(f'process_time_eval={process_time_eval}')
if __name__ == "__main__":
tensor_conversion_03()