-
Notifications
You must be signed in to change notification settings - Fork 0
/
model-def.properties
55 lines (42 loc) · 2.07 KB
/
model-def.properties
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#Definitions to load the model
#All possible annotations:
## "tokenize", "cleanxml", "ssplit", "pos", "lemma", "ner", "regexner", "tokensregex", "entitymentions", "gender",
## "truecase", "parse", "dcoref", "coref", "coref.mention", "relation", "sentiment", "cdc", "depparse", "natlog",
## "openie", "quote", "quote.attribution", "udfeats", "entitylink", "kbp"
annotators = tokenize, ssplit, pos, lemma, ner, depparse
######model = edu/stanford/nlp/models/parser/nndep/english_UD.gz
#####tagger = edu/stanford/nlp/models/pos-tagger/english-left3words/english-left3words-distsim.tagger
# tokenize
tokenize.language = es
# The first model uses a coarser version of Ancora tags (with less features marked).
# It is the correct version to use with our PCFG or SR parsers
#pos.model = edu/stanford/nlp/models/pos-tagger/spanish/spanish-distsim.tagger
pos.model = edu/stanford/nlp/models/pos-tagger/spanish/spanish-ud.tagger
# The below part of speech tagger is the correct one to use with the dependency parser
# pos.model = edu/stanford/nlp/models/pos-tagger/spanish/spanish-ud.tagger
# ner
ner.model = edu/stanford/nlp/models/ner/spanish.ancora.distsim.s512.crf.ser.gz
ner.applyNumericClassifiers = true
ner.useSUTime = true
ner.language = es
# sutime
sutime.language = spanish
# parse
parse.model = edu/stanford/nlp/models/lexparser/spanishPCFG.ser.gz
# parse.model = edu/stanford/nlp/models/srparser/spanishSR.ser.gz
# depparse
depparse.model = edu/stanford/nlp/models/parser/nndep/UD_Spanish.gz
depparse.language = spanish
# regexner
ner.fine.regexner.mapping = edu/stanford/nlp/models/kbp/spanish/kbp_regexner_mapping_sp.tag
ner.fine.regexner.validpospattern = ^(NOUN|ADJ|PROPN).*
ner.fine.regexner.ignorecase = true
ner.fine.regexner.noDefaultOverwriteLabels = CITY,COUNTRY,STATE_OR_PROVINCE
# kbp
kbp.semgrex = edu/stanford/nlp/models/kbp/spanish/semgrex
kbp.tokensregex = edu/stanford/nlp/models/kbp/spanish/tokensregex
kbp.model = none
kbp.language = es
# entitylink
entitylink.caseless = true
entitylink.wikidict = edu/stanford/nlp/models/kbp/spanish/wikidict_spanish.tsv