-
Notifications
You must be signed in to change notification settings - Fork 1
/
EfficientFrontier.py
439 lines (392 loc) · 18.9 KB
/
EfficientFrontier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
"""
The ``efficient_frontier`` submodule houses the EfficientFrontier class, which generates
classical mean-variance optimal portfolios for a variety of objectives and constraints
"""
import copy
import warnings
import numpy as np
import pandas as pd
import cvxpy as cp
from .. import exceptions
from .. import objective_functions, base_optimizer
class EfficientFrontier(base_optimizer.BaseConvexOptimizer):
"""
An EfficientFrontier object (inheriting from BaseConvexOptimizer) contains multiple
optimization methods that can be called (corresponding to different objective
functions) with various parameters. Note: a new EfficientFrontier object should
be instantiated if you want to make any change to objectives/constraints/bounds/parameters.
Instance variables:
- Inputs:
- ``n_assets`` - int
- ``tickers`` - str list
- ``bounds`` - float tuple OR (float tuple) list
- ``cov_matrix`` - np.ndarray
- ``expected_returns`` - np.ndarray
- ``solver`` - str
- ``solver_options`` - {str: str} dict
- Output: ``weights`` - np.ndarray
Public methods:
- ``min_volatility()`` optimizes for minimum volatility
- ``max_sharpe()`` optimizes for maximal Sharpe ratio (a.k.a the tangency portfolio)
- ``max_quadratic_utility()`` maximises the quadratic utility, given some risk aversion.
- ``efficient_risk()`` maximises return for a given target risk
- ``efficient_return()`` minimises risk for a given target return
- ``add_objective()`` adds a (convex) objective to the optimization problem
- ``add_constraint()`` adds a constraint to the optimization problem
- ``convex_objective()`` solves for a generic convex objective with linear constraints
- ``portfolio_performance()`` calculates the expected return, volatility and Sharpe ratio for
the optimized portfolio.
- ``set_weights()`` creates self.weights (np.ndarray) from a weights dict
- ``clean_weights()`` rounds the weights and clips near-zeros.
- ``save_weights_to_file()`` saves the weights to csv, json, or txt.
"""
def __init__(
self,
expected_returns,
cov_matrix,
weight_bounds=(0, 1),
solver=None,
verbose=False,
solver_options=None,
):
"""
:param expected_returns: expected returns for each asset. Can be None if
optimising for volatility only (but not recommended).
:type expected_returns: pd.Series, list, np.ndarray
:param cov_matrix: covariance of returns for each asset. This **must** be
positive semidefinite, otherwise optimization will fail.
:type cov_matrix: pd.DataFrame or np.array
:param weight_bounds: minimum and maximum weight of each asset OR single min/max pair
if all identical, defaults to (0, 1). Must be changed to (-1, 1)
for portfolios with shorting.
:type weight_bounds: tuple OR tuple list, optional
:param solver: name of solver. list available solvers with: `cvxpy.installed_solvers()`
:type solver: str
:param verbose: whether performance and debugging info should be printed, defaults to False
:type verbose: bool, optional
:param solver_options: parameters for the given solver
:type solver_options: dict, optional
:raises TypeError: if ``expected_returns`` is not a series, list or array
:raises TypeError: if ``cov_matrix`` is not a dataframe or array
"""
# Inputs
self.cov_matrix = EfficientFrontier._validate_cov_matrix(cov_matrix)
self.expected_returns = EfficientFrontier._validate_expected_returns(
expected_returns
)
self._max_return_value = None
self._market_neutral = None
if self.expected_returns is None:
num_assets = len(cov_matrix)
else:
num_assets = len(expected_returns)
# Labels
if isinstance(expected_returns, pd.Series):
tickers = list(expected_returns.index)
elif isinstance(cov_matrix, pd.DataFrame):
tickers = list(cov_matrix.columns)
else: # use integer labels
tickers = list(range(num_assets))
if expected_returns is not None and cov_matrix is not None:
if cov_matrix.shape != (num_assets, num_assets):
raise ValueError("Covariance matrix does not match expected returns")
super().__init__(
len(tickers),
tickers,
weight_bounds,
solver=solver,
verbose=verbose,
solver_options=solver_options,
)
@staticmethod
def _validate_expected_returns(expected_returns):
if expected_returns is None:
return None
elif isinstance(expected_returns, pd.Series):
return expected_returns.values
elif isinstance(expected_returns, list):
return np.array(expected_returns)
elif isinstance(expected_returns, np.ndarray):
return expected_returns.ravel()
else:
raise TypeError("expected_returns is not a series, list or array")
@staticmethod
def _validate_cov_matrix(cov_matrix):
if cov_matrix is None:
raise ValueError("cov_matrix must be provided")
elif isinstance(cov_matrix, pd.DataFrame):
return cov_matrix.values
elif isinstance(cov_matrix, np.ndarray):
return cov_matrix
else:
raise TypeError("cov_matrix is not a dataframe or array")
def _validate_returns(self, returns):
"""
Helper method to validate daily returns (needed for some efficient frontiers)
"""
if not isinstance(returns, (pd.DataFrame, np.ndarray)):
raise TypeError("returns should be a pd.Dataframe or np.ndarray")
returns_df = pd.DataFrame(returns)
if returns_df.isnull().values.any():
warnings.warn(
"Removing NaNs from returns",
UserWarning,
)
returns_df = returns_df.dropna(axis=0, how="any")
if self.expected_returns is not None:
if returns_df.shape[1] != len(self.expected_returns):
raise ValueError(
"returns columns do not match expected_returns. Please check your tickers."
)
return returns_df
def _make_weight_sum_constraint(self, is_market_neutral):
"""
Helper method to make the weight sum constraint. If market neutral,
validate the weights proided in the constructor.
"""
if is_market_neutral:
# Check and fix bounds
portfolio_possible = np.any(self._lower_bounds < 0)
if not portfolio_possible:
warnings.warn(
"Market neutrality requires shorting - bounds have been amended",
RuntimeWarning,
)
self._map_bounds_to_constraints((-1, 1))
# Delete original constraints
del self._constraints[0]
del self._constraints[0]
self.add_constraint(lambda w: cp.sum(w) == 0)
else:
self.add_constraint(lambda w: cp.sum(w) == 1)
self._market_neutral = is_market_neutral
def min_volatility(self):
"""
Minimise volatility.
:return: asset weights for the volatility-minimising portfolio
:rtype: OrderedDict
"""
self._objective = objective_functions.portfolio_variance(
self._w, self.cov_matrix
)
for obj in self._additional_objectives:
self._objective += obj
self.add_constraint(lambda w: cp.sum(w) == 1)
return self._solve_cvxpy_opt_problem()
def _max_return(self, return_value=True):
"""
Helper method to maximise return. This should not be used to optimize a portfolio.
:return: asset weights for the return-minimising portfolio
:rtype: OrderedDict
"""
if self.expected_returns is None:
raise ValueError("no expected returns provided")
self._objective = objective_functions.portfolio_return(
self._w, self.expected_returns
)
self.add_constraint(lambda w: cp.sum(w) == 1)
res = self._solve_cvxpy_opt_problem()
if return_value:
return -self._opt.value
else:
return res
def max_sharpe(self, risk_free_rate=0.02):
"""
Maximise the Sharpe Ratio. The result is also referred to as the tangency portfolio,
as it is the portfolio for which the capital market line is tangent to the efficient frontier.
This is a convex optimization problem after making a certain variable substitution. See
`Cornuejols and Tutuncu (2006) <http://web.math.ku.dk/~rolf/CT_FinOpt.pdf>`_ for more.
:param risk_free_rate: risk-free rate of borrowing/lending, defaults to 0.02.
The period of the risk-free rate should correspond to the
frequency of expected returns.
:type risk_free_rate: float, optional
:raises ValueError: if ``risk_free_rate`` is non-numeric
:return: asset weights for the Sharpe-maximising portfolio
:rtype: OrderedDict
"""
if not isinstance(risk_free_rate, (int, float)):
raise ValueError("risk_free_rate should be numeric")
self._risk_free_rate = risk_free_rate
# max_sharpe requires us to make a variable transformation.
# Here we treat w as the transformed variable.
self._objective = cp.quad_form(self._w, self.cov_matrix)
k = cp.Variable()
# Note: objectives are not scaled by k. Hence there are subtle differences
# between how these objectives work for max_sharpe vs min_volatility
if len(self._additional_objectives) > 0:
warnings.warn(
"max_sharpe transforms the optimization problem so additional objectives may not work as expected."
)
for obj in self._additional_objectives:
self._objective += obj
new_constraints = []
# Must rebuild the constraints
for constr in self._constraints:
if isinstance(constr, cp.constraints.nonpos.Inequality):
# Either the first or second item is the expression
if isinstance(
constr.args[0], cp.expressions.constants.constant.Constant
):
new_constraints.append(constr.args[1] >= constr.args[0] * k)
else:
new_constraints.append(constr.args[0] <= constr.args[1] * k)
elif isinstance(constr, cp.constraints.zero.Equality):
new_constraints.append(constr.args[0] == constr.args[1] * k)
else:
raise TypeError(
"Please check that your constraints are in a suitable format"
)
# Transformed max_sharpe convex problem:
self._constraints = [
(self.expected_returns - risk_free_rate).T @ self._w == 1,
cp.sum(self._w) == k,
k >= 0,
] + new_constraints
self._solve_cvxpy_opt_problem()
# Inverse-transform
self.weights = (self._w.value / k.value).round(16) + 0.0
return self._make_output_weights()
def max_quadratic_utility(self, risk_aversion=1, market_neutral=False):
r"""
Maximise the given quadratic utility, i.e:
.. math::
\max_w w^T \mu - \frac \delta 2 w^T \Sigma w
:param risk_aversion: risk aversion parameter (must be greater than 0),
defaults to 1
:type risk_aversion: positive float
:param market_neutral: whether the portfolio should be market neutral (weights sum to zero),
defaults to False. Requires negative lower weight bound.
:param market_neutral: bool, optional
:return: asset weights for the maximum-utility portfolio
:rtype: OrderedDict
"""
if risk_aversion <= 0:
raise ValueError("risk aversion coefficient must be greater than zero")
update_existing_parameter = self.is_parameter_defined("risk_aversion")
if update_existing_parameter:
self._validate_market_neutral(market_neutral)
self.update_parameter_value("risk_aversion", risk_aversion)
else:
self._objective = objective_functions.quadratic_utility(
self._w,
self.expected_returns,
self.cov_matrix,
risk_aversion=risk_aversion,
)
for obj in self._additional_objectives:
self._objective += obj
self._make_weight_sum_constraint(market_neutral)
return self._solve_cvxpy_opt_problem()
def efficient_risk(self, target_volatility, market_neutral=False):
"""
Maximise return for a target risk. The resulting portfolio will have a volatility
less than the target (but not guaranteed to be equal).
:param target_volatility: the desired maximum volatility of the resulting portfolio.
:type target_volatility: float
:param market_neutral: whether the portfolio should be market neutral (weights sum to zero),
defaults to False. Requires negative lower weight bound.
:param market_neutral: bool, optional
:raises ValueError: if ``target_volatility`` is not a positive float
:raises ValueError: if no portfolio can be found with volatility equal to ``target_volatility``
:raises ValueError: if ``risk_free_rate`` is non-numeric
:return: asset weights for the efficient risk portfolio
:rtype: OrderedDict
"""
if not isinstance(target_volatility, (float, int)) or target_volatility < 0:
raise ValueError("target_volatility should be a positive float")
global_min_volatility = np.sqrt(1 / np.sum(np.linalg.pinv(self.cov_matrix)))
if target_volatility < global_min_volatility:
raise ValueError(
"The minimum volatility is {:.3f}. Please use a higher target_volatility".format(
global_min_volatility
)
)
update_existing_parameter = self.is_parameter_defined("target_variance")
if update_existing_parameter:
self._validate_market_neutral(market_neutral)
self.update_parameter_value("target_variance", target_volatility ** 2)
else:
self._objective = objective_functions.portfolio_return(
self._w, self.expected_returns
)
variance = objective_functions.portfolio_variance(self._w, self.cov_matrix)
for obj in self._additional_objectives:
self._objective += obj
target_variance = cp.Parameter(
name="target_variance", value=target_volatility ** 2, nonneg=True
)
self.add_constraint(lambda _: variance <= target_variance)
self._make_weight_sum_constraint(market_neutral)
return self._solve_cvxpy_opt_problem()
def efficient_return(self, target_return, market_neutral=False):
"""
Calculate the 'Markowitz portfolio', minimising volatility for a given target return.
:param target_return: the desired return of the resulting portfolio.
:type target_return: float
:param market_neutral: whether the portfolio should be market neutral (weights sum to zero),
defaults to False. Requires negative lower weight bound.
:type market_neutral: bool, optional
:raises ValueError: if ``target_return`` is not a positive float
:raises ValueError: if no portfolio can be found with return equal to ``target_return``
:return: asset weights for the Markowitz portfolio
:rtype: OrderedDict
"""
if not isinstance(target_return, float) or target_return < 0:
raise ValueError("target_return should be a positive float")
if not self._max_return_value:
self._max_return_value = copy.deepcopy(self)._max_return()
if target_return > self._max_return_value:
raise ValueError(
"target_return must be lower than the maximum possible return"
)
update_existing_parameter = self.is_parameter_defined("target_return")
if update_existing_parameter:
self._validate_market_neutral(market_neutral)
self.update_parameter_value("target_return", target_return)
else:
self._objective = objective_functions.portfolio_variance(
self._w, self.cov_matrix
)
ret = objective_functions.portfolio_return(
self._w, self.expected_returns, negative=False
)
for obj in self._additional_objectives:
self._objective += obj
target_return_par = cp.Parameter(name="target_return", value=target_return)
self.add_constraint(lambda _: ret >= target_return_par)
self._make_weight_sum_constraint(market_neutral)
return self._solve_cvxpy_opt_problem()
def portfolio_performance(self, verbose=False, risk_free_rate=0.02):
"""
After optimising, calculate (and optionally print) the performance of the optimal
portfolio. Currently calculates expected return, volatility, and the Sharpe ratio.
:param verbose: whether performance should be printed, defaults to False
:type verbose: bool, optional
:param risk_free_rate: risk-free rate of borrowing/lending, defaults to 0.02.
The period of the risk-free rate should correspond to the
frequency of expected returns.
:type risk_free_rate: float, optional
:raises ValueError: if weights have not been calcualted yet
:return: expected return, volatility, Sharpe ratio.
:rtype: (float, float, float)
"""
if self._risk_free_rate is not None:
if risk_free_rate != self._risk_free_rate:
warnings.warn(
"The risk_free_rate provided to portfolio_performance is different"
" to the one used by max_sharpe. Using the previous value.",
UserWarning,
)
risk_free_rate = self._risk_free_rate
return base_optimizer.portfolio_performance(
self.weights,
self.expected_returns,
self.cov_matrix,
verbose,
risk_free_rate,
)
def _validate_market_neutral(self, market_neutral: bool) -> None:
if self._market_neutral != market_neutral:
raise exceptions.InstantiationError(
"A new instance must be created when changing market_neutral."
)