-
Notifications
You must be signed in to change notification settings - Fork 50
/
ex_esc50.py
432 lines (346 loc) · 14.8 KB
/
ex_esc50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import os
import sys
import torch
from pytorch_lightning.callbacks import ModelCheckpoint
from sacred.config_helpers import DynamicIngredient, CMD
from torch.nn import functional as F
import numpy as np
from ba3l.experiment import Experiment
from ba3l.module import Ba3lModule
from torch.utils.data import DataLoader
from config_updates import add_configs
from helpers.mixup import my_mixup
from helpers.models_size import count_non_zero_params
from helpers.ramp import exp_warmup_linear_down, cosine_cycle
from helpers.workersinit import worker_init_fn
from sklearn import metrics
from pytorch_lightning import Trainer as plTrainer
from pytorch_lightning.loggers import WandbLogger
ex = Experiment("passt_esc50")
# Example call with all the default config:
# python ex_esc50.py with trainer.precision=16 -p -m mongodb_server:27000:audioset21_balanced -c "ESC50 PaSST base"
# with 2 gpus:
# DDP=2 python ex_esc50.py with trainer.precision=16 -p -m mongodb_server:27000:audioset21_balanced -c "ESC50 PaSST base"
# capture the config of the trainer with the prefix "trainer", this allows to use sacred to update PL trainer config
get_trainer = ex.command(plTrainer, prefix="trainer")
# capture the WandbLogger and prefix it with "wandb", this allows to use sacred to update WandbLogger config from the command line
get_logger = ex.command(WandbLogger, prefix="wandb")
# define datasets and loaders
get_train_loader = ex.datasets.training.iter(DataLoader, static_args=dict(worker_init_fn=worker_init_fn), train=True, batch_size=12,
num_workers=16, shuffle=None, dataset=CMD("/basedataset.get_training_set"),
)
get_validate_loader = ex.datasets.test.iter(DataLoader, static_args=dict(worker_init_fn=worker_init_fn),
validate=True, batch_size=20, num_workers=16,
dataset=CMD("/basedataset.get_test_set"))
@ex.config
def default_conf():
cmd = " ".join(sys.argv)
saque_cmd = os.environ.get("SAQUE_CMD", "").strip()
saque_id = os.environ.get("SAQUE_ID", "").strip()
slurm_job_id = os.environ.get("SLURM_JOB_ID", "").strip()
if os.environ.get("SLURM_ARRAY_JOB_ID", False):
slurm_job_id = os.environ.get("SLURM_ARRAY_JOB_ID", "").strip() + "_" + os.environ.get("SLURM_ARRAY_TASK_ID",
"").strip()
process_id = os.getpid()
models = {
"net": DynamicIngredient("models.passt.model_ing", n_classes=50, s_patchout_t=10, s_patchout_f=3),
"mel": DynamicIngredient("models.preprocess.model_ing",
instance_cmd="AugmentMelSTFT",
n_mels=128, sr=32000, win_length=800, hopsize=320, n_fft=1024, freqm=48,
timem=80,
htk=False, fmin=0.0, fmax=None, norm=1, fmin_aug_range=10,
fmax_aug_range=2000)
}
basedataset = DynamicIngredient("esc50.dataset.dataset")
trainer = dict(max_epochs=10, gpus=1, weights_summary='full', benchmark=True, num_sanity_val_steps=0,
reload_dataloaders_every_epoch=True)
wandb = dict(project="passt_esc50", log_model=True)
lr = 0.00001
use_mixup = True
mixup_alpha = 0.3
# register extra possible configs
add_configs(ex)
@ex.command
def get_scheduler_lambda(warm_up_len=5, ramp_down_start=50, ramp_down_len=50, last_lr_value=0.01,
schedule_mode="exp_lin"):
if schedule_mode == "exp_lin":
return exp_warmup_linear_down(warm_up_len, ramp_down_len, ramp_down_start, last_lr_value)
if schedule_mode == "cos_cyc":
return cosine_cycle(warm_up_len, ramp_down_start, last_lr_value)
raise RuntimeError(f"schedule_mode={schedule_mode} Unknown for a lambda funtion.")
@ex.command
def get_lr_scheduler(optimizer, schedule_mode):
if schedule_mode in {"exp_lin", "cos_cyc"}:
return torch.optim.lr_scheduler.LambdaLR(optimizer, get_scheduler_lambda())
raise RuntimeError(f"schedule_mode={schedule_mode} Unknown.")
@ex.command
def get_optimizer(params, lr, adamw=True, weight_decay=0.0001):
if adamw:
print(f"\nUsing adamw weight_decay={weight_decay}!\n")
return torch.optim.AdamW(params, lr=lr, weight_decay=weight_decay)
return torch.optim.Adam(params, lr=lr)
class M(Ba3lModule):
def __init__(self, experiment):
self.mel = None
self.da_net = None
super(M, self).__init__(experiment)
self.use_mixup = self.config.use_mixup or False
self.mixup_alpha = self.config.mixup_alpha
desc, sum_params, sum_non_zero = count_non_zero_params(self.net)
self.experiment.info["start_sum_params"] = sum_params
self.experiment.info["start_sum_params_non_zero"] = sum_non_zero
# in case we need embedings for the DA
self.net.return_embed = True
self.dyn_norm = self.config.dyn_norm
self.do_swa = False
self.distributed_mode = self.config.trainer.num_nodes > 1
def forward(self, x):
return self.net(x)
def mel_forward(self, x):
old_shape = x.size()
x = x.reshape(-1, old_shape[2])
x = self.mel(x)
x = x.reshape(old_shape[0], old_shape[1], x.shape[1], x.shape[2])
if self.dyn_norm:
if not hasattr(self, "tr_m") or not hasattr(self, "tr_std"):
tr_m, tr_std = get_dynamic_norm(self)
self.register_buffer('tr_m', tr_m)
self.register_buffer('tr_std', tr_std)
x = (x - self.tr_m) / self.tr_std
return x
def training_step(self, batch, batch_idx):
# REQUIRED
x, f, y = batch
if self.mel:
x = self.mel_forward(x)
orig_x = x
batch_size = len(y)
rn_indices, lam = None, None
if self.use_mixup:
rn_indices, lam = my_mixup(batch_size, self.mixup_alpha)
lam = lam.to(x.device)
x = x * lam.reshape(batch_size, 1, 1, 1) + x[rn_indices] * (1. - lam.reshape(batch_size, 1, 1, 1))
y_hat, embed = self.forward(x)
if self.use_mixup:
# y_mix = y * lam.reshape(batch_size, 1) + y[rn_indices] * (1. - lam.reshape(batch_size, 1))
samples_loss = (F.cross_entropy(y_hat, y, reduction="none") * lam.reshape(batch_size) +
F.cross_entropy(y_hat, y[rn_indices], reduction="none") * (1. - lam.reshape(batch_size)))
loss = samples_loss.mean()
loss = samples_loss.mean()
samples_loss = samples_loss.detach()
else:
samples_loss = F.cross_entropy(y_hat, y, reduction="none")
loss = samples_loss.mean()
samples_loss = samples_loss.detach()
results = {"loss": loss, }
return results
def training_epoch_end(self, outputs):
avg_loss = torch.stack([x['loss'] for x in outputs]).mean()
logs = {'train.loss': avg_loss, 'step': self.current_epoch}
self.log_dict(logs, sync_dist=True)
def predict(self, batch, batch_idx: int, dataloader_idx: int = None):
x, f, y = batch
if self.mel:
x = self.mel_forward(x)
y_hat, _ = self.forward(x)
return f, y_hat
def validation_step(self, batch, batch_idx):
x, f, y = batch
if self.mel:
x = self.mel_forward(x)
results = {}
model_name = [("", self.net)]
if self.do_swa:
model_name = model_name + [("swa_", self.net_swa)]
for net_name, net in model_name:
y_hat, _ = net(x)
samples_loss = F.cross_entropy(y_hat, y, reduction="none")
loss = samples_loss.mean()
_, preds = torch.max(y_hat, dim=1)
n_correct_pred_per_sample = (preds == y)
n_correct_pred = n_correct_pred_per_sample.sum()
# self.log("validation.loss", loss, prog_bar=True, on_epoch=True, on_step=False)
results = {**results, net_name + "val_loss": loss,
net_name + "n_correct_pred": torch.as_tensor(n_correct_pred), net_name + "n_pred":torch.as_tensor( len(y)) }
results = {k: v.cpu() for k, v in results.items()}
return results
def validation_epoch_end(self, outputs):
model_name = [("", self.net)]
if self.do_swa:
model_name = model_name + [("swa_", self.net_swa)]
for net_name, net in model_name:
avg_loss = torch.stack([x[net_name + 'val_loss'] for x in outputs]).mean()
val_acc = sum([x['n_correct_pred'] for x in outputs]) * 1.0 / sum(x['n_pred'] for x in outputs)
logs = {net_name + 'val.loss': torch.as_tensor(avg_loss).cuda(),
net_name + 'acc': torch.as_tensor(val_acc).cuda(),
'step': torch.as_tensor(self.current_epoch).cuda()}
self.log_dict(logs, sync_dist=True)
def configure_optimizers(self):
# REQUIRED
# can return multiple optimizers and learning_rate schedulers
# (LBFGS it is automatically supported, no need for closure function)
optimizer = get_optimizer(self.parameters())
# torch.optim.Adam(self.parameters(), lr=self.config.lr)
return {
'optimizer': optimizer,
'lr_scheduler': get_lr_scheduler(optimizer)
}
def configure_callbacks(self):
return get_extra_checkpoint_callback() + get_extra_swa_callback()
@ex.command
def get_dynamic_norm(model, dyn_norm=False):
if not dyn_norm:
return None, None
raise RuntimeError('no dynamic norm supported yet.')
@ex.command
def get_extra_checkpoint_callback(save_last_n=None):
if save_last_n is None:
return []
return [ModelCheckpoint(monitor="step", verbose=True, save_top_k=save_last_n, mode='max')]
@ex.command
def get_extra_swa_callback(swa=True, swa_epoch_start=2,
swa_freq=1):
if not swa:
return []
print("\n Using swa!\n")
from helpers.swa_callback import StochasticWeightAveraging
return [StochasticWeightAveraging(swa_epoch_start=swa_epoch_start, swa_freq=swa_freq)]
@ex.command
def main(_run, _config, _log, _rnd, _seed):
trainer = get_trainer()
train_loader = get_train_loader()
val_loader = get_validate_loader()
modul = M(ex)
trainer.fit(
modul,
train_dataloaders=train_loader,
val_dataloaders=val_loader,
)
return {"done": True}
@ex.command
def model_speed_test(_run, _config, _log, _rnd, _seed, speed_test_batch_size=100):
'''
Test training speed of a model
@param _run:
@param _config:
@param _log:
@param _rnd:
@param _seed:
@param speed_test_batch_size: the batch size during the test
@return:
'''
modul = M(ex)
modul = modul.cuda()
batch_size = speed_test_batch_size
print(f"\nBATCH SIZE : {batch_size}\n")
test_length = 100
print(f"\ntest_length : {test_length}\n")
x = torch.ones([batch_size, 1, 128, 998]).cuda()
target = torch.ones([batch_size, 527]).cuda()
# one passe
net = modul.net
# net(x)
scaler = torch.cuda.amp.GradScaler()
torch.backends.cudnn.benchmark = True
# net = torch.jit.trace(net,(x,))
optimizer = torch.optim.SGD(net.parameters(), lr=0.001)
print("warmup")
import time
torch.cuda.synchronize()
t1 = time.time()
for i in range(10):
with torch.cuda.amp.autocast():
y_hat, embed = net(x)
loss = F.binary_cross_entropy_with_logits(y_hat, target, reduction="none").mean()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
torch.cuda.synchronize()
t2 = time.time()
print('warmup done:', (t2 - t1))
torch.cuda.synchronize()
t1 = time.time()
print("testing speed")
for i in range(test_length):
with torch.cuda.amp.autocast():
y_hat, embed = net(x)
loss = F.binary_cross_entropy_with_logits(y_hat, target, reduction="none").mean()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
torch.cuda.synchronize()
t2 = time.time()
print('test done:', (t2 - t1))
print("average speed: ", (test_length * batch_size) / (t2 - t1), " specs/second")
@ex.command
def evaluate_only(_run, _config, _log, _rnd, _seed):
# force overriding the config, not logged = not recommended
trainer = get_trainer()
train_loader = get_train_loader()
val_loader = get_validate_loader()
modul = M(ex)
modul.val_dataloader = None
#trainer.val_dataloaders = None
print(f"\n\nValidation len={len(val_loader)}\n")
res = trainer.validate(modul, dataloaders=val_loader)
print("\n\n Validtaion:")
print(res)
@ex.command
def test_loaders():
'''
get one sample from each loader for debbuging
@return:
'''
for i, b in enumerate(ex.datasets.training.get_iter()):
print(b)
break
for i, b in enumerate(ex.datasets.test.get_iter()):
print(b)
break
def set_default_json_pickle(obj):
if isinstance(obj, set):
return list(obj)
raise TypeError
def multiprocessing_run(rank, word_size):
print("rank ", rank, os.getpid())
print("word_size ", word_size)
os.environ['NODE_RANK'] = str(rank)
os.environ['CUDA_VISIBLE_DEVICES'] = os.environ['CUDA_VISIBLE_DEVICES'].split(",")[rank]
argv = sys.argv
if rank != 0:
print(f"Unobserved {os.getpid()} with rank {rank}")
argv = argv + ["-u"] # only rank 0 is observed
if "with" not in argv:
argv = argv + ["with"]
argv = argv + [f"trainer.num_nodes={word_size}", f"trainer.accelerator=ddp"]
print(argv)
@ex.main
def default_command():
return main()
ex.run_commandline(argv)
if __name__ == '__main__':
# set DDP=2 forks two processes to run on two GPUs
# the environment variable "DDP" define the number of processes to fork
# With two 2x 2080ti you can train the full model to .47 in around 24 hours
# you may need to set NCCL_P2P_DISABLE=1
word_size = os.environ.get("DDP", None)
if word_size:
import random
word_size = int(word_size)
print(f"\n\nDDP TRAINING WITH WORD_SIZE={word_size}\n\n")
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = f"{9999 + random.randint(0, 9999)}" # plz no collisions
os.environ['PL_IN_DDP_SUBPROCESS'] = '1'
for rank in range(word_size):
pid = os.fork()
if pid == 0:
print("Child Forked ")
multiprocessing_run(rank, word_size)
exit(0)
pid, exit_code = os.wait()
print(pid, exit_code)
exit(0)
print("__main__ is running pid", os.getpid(), "in module main: ", __name__)
@ex.automain
def default_command():
return main()