-
Notifications
You must be signed in to change notification settings - Fork 247
/
galoisAvx512_amd64.go
337 lines (307 loc) · 10.9 KB
/
galoisAvx512_amd64.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
//go:build !noasm && !appengine && !gccgo
// +build !noasm,!appengine,!gccgo
// Copyright 2015, Klaus Post, see LICENSE for details.
// Copyright 2019, Minio, Inc.
package reedsolomon
import (
"sync"
)
//go:noescape
func _galMulAVX512Parallel81(in, out [][]byte, matrix *[matrixSize81]byte, addTo bool)
//go:noescape
func _galMulAVX512Parallel82(in, out [][]byte, matrix *[matrixSize82]byte, addTo bool)
//go:noescape
func _galMulAVX512Parallel84(in, out [][]byte, matrix *[matrixSize84]byte, addTo bool)
const (
dimIn = 8 // Number of input rows processed simultaneously
dimOut81 = 1 // Number of output rows processed simultaneously for x1 routine
dimOut82 = 2 // Number of output rows processed simultaneously for x2 routine
dimOut84 = 4 // Number of output rows processed simultaneously for x4 routine
matrixSize81 = (16 + 16) * dimIn * dimOut81 // Dimension of slice of matrix coefficient passed into x1 routine
matrixSize82 = (16 + 16) * dimIn * dimOut82 // Dimension of slice of matrix coefficient passed into x2 routine
matrixSize84 = (16 + 16) * dimIn * dimOut84 // Dimension of slice of matrix coefficient passed into x4 routine
)
// Construct block of matrix coefficients for single output row in parallel
func setupMatrix81(matrixRows [][]byte, inputOffset, outputOffset int, matrix *[matrixSize81]byte) {
offset := 0
for c := inputOffset; c < inputOffset+dimIn; c++ {
for iRow := outputOffset; iRow < outputOffset+dimOut81; iRow++ {
if c < len(matrixRows[iRow]) {
coeff := matrixRows[iRow][c]
copy(matrix[offset*32:], mulTableLow[coeff][:])
copy(matrix[offset*32+16:], mulTableHigh[coeff][:])
} else {
// coefficients not used for this input shard (so null out)
v := matrix[offset*32 : offset*32+32]
for i := range v {
v[i] = 0
}
}
offset += dimIn
if offset >= dimIn*dimOut81 {
offset -= dimIn*dimOut81 - 1
}
}
}
}
// Construct block of matrix coefficients for 2 output rows in parallel
func setupMatrix82(matrixRows [][]byte, inputOffset, outputOffset int, matrix *[matrixSize82]byte) {
offset := 0
for c := inputOffset; c < inputOffset+dimIn; c++ {
for iRow := outputOffset; iRow < outputOffset+dimOut82; iRow++ {
if c < len(matrixRows[iRow]) {
coeff := matrixRows[iRow][c]
copy(matrix[offset*32:], mulTableLow[coeff][:])
copy(matrix[offset*32+16:], mulTableHigh[coeff][:])
} else {
// coefficients not used for this input shard (so null out)
v := matrix[offset*32 : offset*32+32]
for i := range v {
v[i] = 0
}
}
offset += dimIn
if offset >= dimIn*dimOut82 {
offset -= dimIn*dimOut82 - 1
}
}
}
}
// Construct block of matrix coefficients for 4 output rows in parallel
func setupMatrix84(matrixRows [][]byte, inputOffset, outputOffset int, matrix *[matrixSize84]byte) {
offset := 0
for c := inputOffset; c < inputOffset+dimIn; c++ {
for iRow := outputOffset; iRow < outputOffset+dimOut84; iRow++ {
if c < len(matrixRows[iRow]) {
coeff := matrixRows[iRow][c]
copy(matrix[offset*32:], mulTableLow[coeff][:])
copy(matrix[offset*32+16:], mulTableHigh[coeff][:])
} else {
// coefficients not used for this input shard (so null out)
v := matrix[offset*32 : offset*32+32]
for i := range v {
v[i] = 0
}
}
offset += dimIn
if offset >= dimIn*dimOut84 {
offset -= dimIn*dimOut84 - 1
}
}
}
}
// Invoke AVX512 routine for single output row in parallel
func galMulAVX512Parallel81(in, out [][]byte, matrixRows [][]byte, inputOffset, outputOffset, start, stop int, matrix81 *[matrixSize81]byte) {
done := stop - start
if done <= 0 {
return
}
inputEnd := inputOffset + dimIn
if inputEnd > len(in) {
inputEnd = len(in)
}
outputEnd := outputOffset + dimOut81
if outputEnd > len(out) {
outputEnd = len(out)
}
// We know the max size, alloc temp array.
var inTmp [dimIn][]byte
for i, v := range in[inputOffset:inputEnd] {
inTmp[i] = v[start:stop]
}
var outTmp [dimOut81][]byte
for i, v := range out[outputOffset:outputEnd] {
outTmp[i] = v[start:stop]
}
addTo := inputOffset != 0 // Except for the first input column, add to previous results
_galMulAVX512Parallel81(inTmp[:inputEnd-inputOffset], outTmp[:outputEnd-outputOffset], matrix81, addTo)
done = start + ((done >> 6) << 6)
if done < stop {
galMulAVX512LastInput(inputOffset, inputEnd, outputOffset, outputEnd, matrixRows, done, stop, out, in)
}
}
// Invoke AVX512 routine for 2 output rows in parallel
func galMulAVX512Parallel82(in, out [][]byte, matrixRows [][]byte, inputOffset, outputOffset, start, stop int, matrix82 *[matrixSize82]byte) {
done := stop - start
if done <= 0 {
return
}
inputEnd := inputOffset + dimIn
if inputEnd > len(in) {
inputEnd = len(in)
}
outputEnd := outputOffset + dimOut82
if outputEnd > len(out) {
outputEnd = len(out)
}
// We know the max size, alloc temp array.
var inTmp [dimIn][]byte
for i, v := range in[inputOffset:inputEnd] {
inTmp[i] = v[start:stop]
}
var outTmp [dimOut82][]byte
for i, v := range out[outputOffset:outputEnd] {
outTmp[i] = v[start:stop]
}
addTo := inputOffset != 0 // Except for the first input column, add to previous results
_galMulAVX512Parallel82(inTmp[:inputEnd-inputOffset], outTmp[:outputEnd-outputOffset], matrix82, addTo)
done = start + ((done >> 6) << 6)
if done < stop {
galMulAVX512LastInput(inputOffset, inputEnd, outputOffset, outputEnd, matrixRows, done, stop, out, in)
}
}
// Invoke AVX512 routine for 4 output rows in parallel
func galMulAVX512Parallel84(in, out [][]byte, matrixRows [][]byte, inputOffset, outputOffset, start, stop int, matrix84 *[matrixSize84]byte) {
done := stop - start
if done <= 0 {
return
}
inputEnd := inputOffset + dimIn
if inputEnd > len(in) {
inputEnd = len(in)
}
outputEnd := outputOffset + dimOut84
if outputEnd > len(out) {
outputEnd = len(out)
}
// We know the max size, alloc temp array.
var inTmp [dimIn][]byte
for i, v := range in[inputOffset:inputEnd] {
inTmp[i] = v[start:stop]
}
var outTmp [dimOut84][]byte
for i, v := range out[outputOffset:outputEnd] {
outTmp[i] = v[start:stop]
}
addTo := inputOffset != 0 // Except for the first input column, add to previous results
_galMulAVX512Parallel84(inTmp[:inputEnd-inputOffset], outTmp[:outputEnd-outputOffset], matrix84, addTo)
done = start + ((done >> 6) << 6)
if done < stop {
galMulAVX512LastInput(inputOffset, inputEnd, outputOffset, outputEnd, matrixRows, done, stop, out, in)
}
}
func galMulAVX512LastInput(inputOffset int, inputEnd int, outputOffset int, outputEnd int, matrixRows [][]byte, done int, stop int, out [][]byte, in [][]byte) {
for c := inputOffset; c < inputEnd; c++ {
for iRow := outputOffset; iRow < outputEnd; iRow++ {
if c < len(matrixRows[iRow]) {
mt := mulTable[matrixRows[iRow][c]][:256]
for i := done; i < stop; i++ {
if c == 0 { // only set value for first input column
out[iRow][i] = mt[in[c][i]]
} else { // and add for all others
out[iRow][i] ^= mt[in[c][i]]
}
}
}
}
}
}
// Perform the same as codeSomeShards, but taking advantage of
// AVX512 parallelism for up to 4x faster execution as compared to AVX2
func (r *reedSolomon) codeSomeShardsAvx512(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
// Process using no goroutines
start, end := 0, r.o.perRound
if end > byteCount {
end = byteCount
}
for start < byteCount {
matrix84 := [matrixSize84]byte{}
matrix82 := [matrixSize82]byte{}
matrix81 := [matrixSize81]byte{}
outputRow := 0
// First process (multiple) batches of 4 output rows in parallel
if outputRow+dimOut84 <= outputCount {
for ; outputRow+dimOut84 <= outputCount; outputRow += dimOut84 {
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
setupMatrix84(matrixRows, inputRow, outputRow, &matrix84)
galMulAVX512Parallel84(inputs, outputs, matrixRows, inputRow, outputRow, start, end, &matrix84)
}
}
}
// Then process a (single) batch of 2 output rows in parallel
if outputRow+dimOut82 <= outputCount {
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
setupMatrix82(matrixRows, inputRow, outputRow, &matrix82)
galMulAVX512Parallel82(inputs, outputs, matrixRows, inputRow, outputRow, start, end, &matrix82)
}
outputRow += dimOut82
}
// Lastly, we may have a single output row left (for uneven parity)
if outputRow < outputCount {
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
setupMatrix81(matrixRows, inputRow, outputRow, &matrix81)
galMulAVX512Parallel81(inputs, outputs, matrixRows, inputRow, outputRow, start, end, &matrix81)
}
}
start = end
end += r.o.perRound
if end > byteCount {
end = byteCount
}
}
}
// Perform the same as codeSomeShards, but taking advantage of
// AVX512 parallelism for up to 4x faster execution as compared to AVX2
func (r *reedSolomon) codeSomeShardsAvx512P(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) {
var wg sync.WaitGroup
do := byteCount / r.o.maxGoroutines
if do < r.o.minSplitSize {
do = r.o.minSplitSize
}
// Make sizes divisible by 64
do = (do + 63) & (^63)
start := 0
for start < byteCount {
if start+do > byteCount {
do = byteCount - start
}
wg.Add(1)
go func(grStart, grStop int) {
start, stop := grStart, grStart+r.o.perRound
if stop > grStop {
stop = grStop
}
// Loop for each round.
matrix84 := [matrixSize84]byte{}
matrix82 := [matrixSize82]byte{}
matrix81 := [matrixSize81]byte{}
for start < grStop {
outputRow := 0
// First process (multiple) batches of 4 output rows in parallel
if outputRow+dimOut84 <= outputCount {
// 1K matrix buffer
for ; outputRow+dimOut84 <= outputCount; outputRow += dimOut84 {
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
setupMatrix84(matrixRows, inputRow, outputRow, &matrix84)
galMulAVX512Parallel84(inputs, outputs, matrixRows, inputRow, outputRow, start, stop, &matrix84)
}
}
}
// Then process a (single) batch of 2 output rows in parallel
if outputRow+dimOut82 <= outputCount {
// 512B matrix buffer
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
setupMatrix82(matrixRows, inputRow, outputRow, &matrix82)
galMulAVX512Parallel82(inputs, outputs, matrixRows, inputRow, outputRow, start, stop, &matrix82)
}
outputRow += dimOut82
}
// Lastly, we may have a single output row left (for uneven parity)
if outputRow < outputCount {
for inputRow := 0; inputRow < len(inputs); inputRow += dimIn {
setupMatrix81(matrixRows, inputRow, outputRow, &matrix81)
galMulAVX512Parallel81(inputs, outputs, matrixRows, inputRow, outputRow, start, stop, &matrix81)
}
}
start = stop
stop += r.o.perRound
if stop > grStop {
stop = grStop
}
}
wg.Done()
}(start, start+do)
start += do
}
wg.Wait()
}