-
Notifications
You must be signed in to change notification settings - Fork 5
/
train.py
executable file
·509 lines (439 loc) · 29.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
from models.frameworks import get_model
from models.base import get_optimizer, get_scheduler
from models.frameworks.volsdf import spec_net_to_lin, volume_render_two_bounce
from utils import rend_util, train_util, mesh_util, io_util
from utils.dist_util import get_local_rank, init_env, is_master, get_rank, get_world_size
from utils.print_fn import log
from utils.logger import Logger
from utils.checkpoints import CheckpointIO
from dataio import get_data
import imageio
import os
import sys
import time
import functools
from dotdict import dotdict
from tqdm import tqdm
import torch
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from src.utils import linear_rgb_to_srgb, linear_rgb_to_srgb_np
from tools.render_view import write_env_map_tb
from utils.two_bounce_utils import integrate_virtual_cameras
def main_function(args):
init_env(args)
#----------------------------
#-------- shortcuts ---------
rank = get_rank()
local_rank = get_local_rank()
world_size = get_world_size()
i_backup = int(args.training.i_backup // world_size) if args.training.i_backup > 0 else -1
i_val = int(args.training.i_val // world_size) if args.training.i_val > 0 else -1
i_val_mesh = int(args.training.i_val_mesh // world_size) if args.training.i_val_mesh > 0 else -1
special_i_val_mesh = [int(i // world_size) for i in [3000, 5000, 7000]]
exp_dir = args.training.exp_dir
mesh_dir = os.path.join(exp_dir, 'meshes')
device = torch.device('cuda', local_rank)
# logger
logger = Logger(
log_dir=exp_dir,
img_dir=os.path.join(exp_dir, 'imgs'),
monitoring=args.training.get('monitoring', 'tensorboard'),
monitoring_dir=os.path.join(exp_dir, 'events'),
rank=rank, is_master=is_master(), multi_process_logging=(world_size > 1))
log.info("=> Experiments dir: {}".format(exp_dir))
if is_master():
# backup codes
io_util.backup(os.path.join(exp_dir, 'backup'))
# save configs
io_util.save_config(args, os.path.join(exp_dir, 'config.yaml'))
dataset, val_dataset = get_data(args, return_val=True, val_downscale=args.data.get('val_downscale', 4.0))
bs = args.data.get('batch_size', None)
if args.ddp:
train_sampler = DistributedSampler(dataset)
dataloader = torch.utils.data.DataLoader(dataset, sampler=train_sampler, batch_size=bs)
val_sampler = DistributedSampler(val_dataset)
valloader = torch.utils.data.DataLoader(val_dataset, sampler=val_sampler, batch_size=bs)
else:
dataloader = DataLoader(dataset,
batch_size=bs,
shuffle=True,
pin_memory=args.data.get('pin_memory', False))
valloader = DataLoader(val_dataset,
batch_size=1,
shuffle=True)
# Create model
model, trainer, render_kwargs_train, render_kwargs_test, volume_render_fn = get_model(args)
model.to(device)
log.info(model)
log.info("=> Nerf params: " + str(train_util.count_trainable_parameters(model)))
render_kwargs_train['H'] = dataset.H
render_kwargs_train['W'] = dataset.W
render_kwargs_test['H'] = val_dataset.H
render_kwargs_test['W'] = val_dataset.W
# build optimizer
optimizer = get_optimizer(args, model)
# checkpoints
checkpoint_io = CheckpointIO(checkpoint_dir=os.path.join(exp_dir, 'ckpts'), allow_mkdir=is_master())
if world_size > 1:
dist.barrier()
# Register modules to checkpoint
checkpoint_io.register_modules(
model=model,
optimizer=optimizer,
)
# Load checkpoints
load_dict = checkpoint_io.load_file(
args.training.ckpt_file,
ignore_keys=args.training.ckpt_ignore_keys,
only_use_keys=args.training.ckpt_only_use_keys,
map_location=device)
logger.load_stats('stats.p') # this will be used for plotting
it = load_dict.get('global_step', 0)
epoch_idx = load_dict.get('epoch_idx', 0)
# pretrain if needed. must be after load state_dict, since needs 'is_pretrained' variable to be loaded.
#---------------------------------------------
#-------- init perparation only done in master
#---------------------------------------------
if is_master():
pretrain_config = {'logger': logger}
if 'lr_pretrain' in args.training:
pretrain_config['lr'] = args.training.lr_pretrain
if(model.implicit_surface.pretrain_hook(pretrain_config)):
checkpoint_io.save(filename='latest.pt'.format(it), global_step=it, epoch_idx=epoch_idx)
# Parallel training
if args.ddp:
trainer = DDP(trainer, device_ids=args.device_ids, output_device=local_rank, find_unused_parameters=False)
# build scheduler
scheduler = get_scheduler(args, optimizer, last_epoch=it-1)
t0 = time.time()
log.info('=> Start training..., it={}, lr={}, in {}'.format(it, optimizer.param_groups[0]['lr'], exp_dir))
end = (it >= args.training.num_iters)
with tqdm(range(args.training.num_iters), disable=not is_master()) as pbar:
if is_master():
pbar.update(it)
while it <= args.training.num_iters and not end:
try:
if args.ddp:
train_sampler.set_epoch(epoch_idx)
for (indices, model_input, ground_truth) in dataloader:
int_it = int(it // world_size)
#-------------------
# validate
#-------------------
# if False: #i_val > 0 and int_it % i_val == 0:
if i_val > 0 and int_it % i_val == 0:
print("Validating at iter: {}".format(int_it))
with torch.no_grad():
(val_ind, val_in, val_gt) = next(iter(valloader))
intrinsics = val_in["intrinsics"].to(device)
c2w = val_in['c2w'].to(device)
# N_rays=-1 for rendering full image
rays_o, rays_d, select_inds = rend_util.get_rays(
c2w, intrinsics, render_kwargs_test['H'], render_kwargs_test['W'], N_rays=-1,
compute_radii= args.model.use_env_mlp == 'virtual_cone_caustic_approx_5drf_mip_nerf')
if args.model.use_env_mlp == 'virtual_cone_caustic_approx_5drf_mip_nerf':
rays_radii = rays_d[..., 3]
render_kwargs_test['rays_radii'] = rays_radii
rays_d = rays_d[..., 0:3]
if not args.data.gt_type == 'stokes':
target_rgb = val_gt['rgb'].to(device)
# For diffuse and specular, disable specular rendering
if not args.model.only_diffuse:
if it < args.training.num_no_s1_s2:
render_kwargs_test['only_diffuse'] = True
else:
render_kwargs_test['only_diffuse'] = False
# ret = torch.load('ret.pt')
# ret = torch.load('textured_cbox_ret.pt')
rgb, depth_v, ret = volume_render_fn(rays_o, rays_d, show_progress=True, calc_normal=True, detailed_output=True, **render_kwargs_test)
# torch.save(ret, 'textured_cbox_ret.pt')
to_img = functools.partial(
rend_util.lin2img,
H=render_kwargs_test['H'], W=render_kwargs_test['W'],
batched=render_kwargs_test['batched'])
if args.data.space == 'linear':
to_space = lambda x:linear_rgb_to_srgb(x)
elif args.data.space == 'srgb':
to_space = lambda x:x
if not args.data.gt_type == 'stokes':
logger.add_imgs(to_img(to_space(target_rgb)), 'val/gt_rgb', it)
logger.add_imgs(to_img(to_space(rgb)), 'val/predicted_rgb', it)
logger.add_imgs(to_img(ret['mask_volume'].unsqueeze(-1)), 'val/pred_mask_volume', it)
clipped_depth_v = torch.clip(depth_v, args.data.near, args.data.far)
logger.add_imgs(to_img((clipped_depth_v/clipped_depth_v.max()).unsqueeze(-1)), 'val/predicted_depth', it)
if 'depth_surface' in ret:
logger.add_imgs(to_img((ret['depth_surface']/ret['depth_surface'].max()).unsqueeze(-1)), 'val/pred_depth_surface', it)
if 'mask_surface' in ret:
logger.add_imgs(to_img(ret['mask_surface'].unsqueeze(-1).float()), 'val/predicted_mask', it)
if hasattr(trainer, 'val'):
trainer.val(logger, ret, to_img, it, render_kwargs_test)
logger.add_imgs(to_img(ret['normals_volume']/2.+0.5), 'val/predicted_normals', it)
if args.model.polarized:
if not args.data.gt_type == 'stokes':
target_normal = val_gt['normal'].to(device)
logger.add_imgs(to_img(target_normal/2.+0.5), 'val/gt_normals', it)
if (not args.model.only_diffuse) and (it>args.training.num_no_s1_s2):
if not args.data.gt_type == 'stokes':
target_specular = val_gt['specular'].to(device)
logger.add_imgs(to_img(to_space(target_specular)), 'val/gt_specular', it)
# save as png
logger.add_imgs(to_img(to_space(ret['spec_map'])),'val/predicted_specular',it)
# save as exr
spec_rgb_finetorch = torch.reshape(ret['spec_map'], (render_kwargs_test['H'], render_kwargs_test['W'], 3))
_path = 'val/predicted_specular'
full_path = "%s/%s/%08d" % (logger.img_dir, _path, it)
imageio.imwrite(f"{full_path}.exr", spec_rgb_finetorch.cpu().detach().numpy())
if 'rough_map' in ret.keys():
rough_dir = 'val/roughness'
rough_map = ret['rough_map'].unsqueeze(-1)
logger.add_imgs(to_img((rough_map)),rough_dir,it)
full_roughmap_path = "%s/%s/%08d" % (logger.img_dir, rough_dir, it)
rough_map_torch = torch.reshape(rough_map, (render_kwargs_test['H'], render_kwargs_test['W']))
imageio.imwrite(f"{full_roughmap_path}.exr", rough_map_torch.cpu().detach().numpy())
# Plot polarimetric cues
if args.model.polarized:
from src.polarization import cues_from_stokes, colorize_cues, stokes_from_normal_rad
# Predicted
pred_stokes = torch.stack([ret['s0'],
ret['s1'],
ret['s2']], -1).cpu()
pred_cues = colorize_cues(cues_from_stokes(pred_stokes),
gamma_s0=(args.data.space=='linear'))
for cue_name, cue_val in pred_cues.items():
logger.add_imgs(to_img(cue_val),f'val/cues_predicted_{cue_name}',it)
if 'spec_fac0' in ret:
logger.add_imgs(to_img(ret['spec_fac0']),f'val/pred_spec_fac0',it)
if 'fres_out' in ret:
logger.add_imgs(to_img(ret['fres_out']),f'val/pred_fres_out',it)
if 'fres_diff' in ret:
logger.add_imgs(to_img(ret['fres_diff']),f'val/pred_fres_diff',it)
if 'mask_map' in ret:
logger.add_imgs(to_img(ret['mask_map'].unsqueeze(-1)),f'val/pred_mask_map',it)
if args.data.gt_type == 'normal':
# GT
target_normal = val_gt['normal'].to(device)
if args.model.only_diffuse:
# [B, N_rays,3, 3]
target_stokes = stokes_from_normal_rad(rays_o, rays_d, target_normal,
target_rgb, train_mode=True).cpu()
else:
target_specular = val_gt['specular'].to(device)
target_stokes = stokes_from_normal_rad(rays_o, rays_d, target_normal,
target_rgb, spec_rads=target_specular,
train_mode=True).cpu()
elif args.data.gt_type == 'stokes':
target_stokes = torch.stack([val_gt['s0'].to(device),
val_gt['s1'].to(device),
val_gt['s2'].to(device)], -1).cpu()
else:
raise Exception(f'Invalid data gt_type {args.data.gt_type}. Options: stokes, normal')
target_cues = colorize_cues(cues_from_stokes(target_stokes),
gamma_s0=(args.data.space=='linear'))
for cue_name, cue_val in target_cues.items():
logger.add_imgs(to_img(cue_val),f'val/cues_gt_{cue_name}',it)
if 'spec_map_coarse' in ret.keys():
logger.add_imgs(to_img(to_space(ret['spec_map_coarse'])),'val/predicted_specular_coarse',it)
if 'coarse_2bounce_depth' in ret.keys():
clipped_depth = torch.clip(ret['coarse_2bounce_depth'], args.two_bounce.near, args.two_bounce.far)
logger.add_imgs(to_img((clipped_depth/clipped_depth.max()).unsqueeze(-1)), 'val/pred_coarse_2bounce_depth_clipped_max', it)
logger.add_imgs(to_img((clipped_depth/args.two_bounce.far).unsqueeze(-1)), 'val/pred_coarse_2bounce_depth_clipped', it)
if 'fine_2bounce_depth' in ret.keys():
clipped_depth = torch.clip(ret['fine_2bounce_depth'], args.two_bounce.near, args.two_bounce.far)
logger.add_imgs(to_img((clipped_depth/clipped_depth.max()).unsqueeze(-1)), 'val/pred_fine_2bounce_depth_clipped_max', it)
clipped_depth_torch = torch.reshape(clipped_depth, (render_kwargs_test['H'], render_kwargs_test['W']))
logger.add_imgs(to_img((clipped_depth/args.two_bounce.far).unsqueeze(-1)), 'val/pred_fine_2bounce_depth_clipped', it)
# save as exr
_path = 'val/pred_fine_2bounce_depth_clipped_max'
full_path = "%s/%s/%08d" % (logger.img_dir, _path, it)
imageio.imwrite(f"{full_path}.exr", clipped_depth_torch.cpu().detach().numpy())
if args.two_bounce.mip_nerf.use_mip_nerf and ((not args.model.only_diffuse)
and (it>args.training.num_no_s1_s2)):
# create a virtual camera:
mask = val_in["object_mask"]
H, W = render_kwargs_test['H'] , render_kwargs_test['W']
print("{}, {}, {}".format(H, W, mask.shape ))
h2, w2 = render_kwargs_test['H']/2 , render_kwargs_test['W']/2
# h2, w2 = 64, 50
# h2, w2 = 66, 37
# idx1 = int(h2 * H + w2)
idx = int(w2 * H + h2) # this is 8064 when h2,w2=127/2
# idx = 8064
# print(idx, H*W/2)
print("mask value at {},{} = {} and idx: {}".format(h2, w2,
mask.reshape(H, W)[int(h2), int(w2)], mask[0, idx]))
_origin = rays_o.reshape(-1, 3)[idx].reshape(1, 3)
_dir = rays_d.reshape(-1, 3)[idx].reshape(1, 3)
_nablas = F.normalize(ret['implicit_nablas'], dim=-1).reshape(H*W, -1, 3)[idx, :]
if args.model.use_env_mlp in ['virtual_cone_caustic_approx_5drf_mip_nerf']:
_radii = rays_radii.reshape(-1,1)[idx].reshape(1,1)
else:
_radii = None
if 'implicit_curvature' in ret:
curvature = ret['implicit_curvature'].reshape(H*W, -1, 1)[idx, :]
else:
curvature = None
_d_vals = ret['d_vals'].reshape(H*W, -1, 3)[idx, :]
_visibility_weights = ret['visibility_weights'].reshape(H*W, -1, 1)[idx, :]
virtual_rgb_fine, virtual_depth = integrate_virtual_cameras(trainer, _origin, _dir, _d_vals,
_nablas, _visibility_weights,
args.two_bounce.training.hfov_val, H, W,
args.two_bounce.near,
args.two_bounce.far,
curvature=curvature,
env_mlp=args.model.use_env_mlp,
radii=_radii)
# Save as PNGs as well.
logger.add_imgs(to_img(to_space(virtual_rgb_fine)),'val/virtual_camera_fine', it)
clipped_depth = torch.clip(virtual_depth, args.two_bounce.near, args.two_bounce.far)
logger.add_imgs(to_img(to_space(clipped_depth/clipped_depth.max())),'val/virtual_camera_depth_fine', it)
# store as exr image
virtual_rgb_finetorch = torch.reshape(virtual_rgb_fine, (render_kwargs_test['H'], render_kwargs_test['W'], 3))
_path = 'val/virtual_camera_fine'
full_path = "%s/%s/%08d" % (logger.img_dir, _path, it)
imageio.imwrite(f"{full_path}.exr", virtual_rgb_finetorch.cpu().detach().numpy())
# store depth as exr
clipped_depth_torch = torch.reshape(clipped_depth, (render_kwargs_test['H'], render_kwargs_test['W']))
_path = 'val/virtual_camera_depth_fine'
full_path = "%s/%s/%08d" % (logger.img_dir, _path, it)
imageio.imwrite(f"{full_path}.exr", clipped_depth_torch.cpu().detach().numpy())
# plot the curvature, radius if available
if 'curvature_map' in ret:
_path = 'val/curvature'
full_path = "%s/%s" % (logger.img_dir, _path)
if not os.path.exists(full_path):
os.makedirs(full_path)
full_path = "%s/%s/%08d" % (logger.img_dir, _path, it)
curvature = torch.reshape(ret['curvature_map'], (render_kwargs_test['H'], render_kwargs_test['W']))
imageio.imwrite(f"{full_path}.exr", curvature.cpu().detach().numpy())
# plot the radius
_path = 'val/radius_of_curvature'
full_path = "%s/%s" % (logger.img_dir, _path)
if not os.path.exists(full_path):
os.makedirs(full_path)
full_path = "%s/%s/%08d" % (logger.img_dir, _path, it)
curvature = torch.reshape(ret['curvature_map'], (render_kwargs_test['H'], render_kwargs_test['W']))
radius = 1/(curvature+1e-7)
imageio.imwrite(f"{full_path}.exr", radius.cpu().detach().numpy())
# Plot masks
if "object_mask" in val_in:
logger.add_imgs(to_img((val_in["object_mask"]+0.).to(device).unsqueeze(-1)),f'val/gt_object_mask',it)
if "horizon_mask" in val_in:
logger.add_imgs(to_img((val_in["horizon_mask"]+0.).to(device).unsqueeze(-1)),f'val/gt_horizon_mask',it)
#-------------------
# validate mesh
#-------------------
if is_master():
# NOTE: not validating mesh before 3k, as some of the instances of DTU for NeuS training will have no large enough mesh at the beginning.
try:
if i_val_mesh > 0 and (int_it % i_val_mesh == 0 or int_it in special_i_val_mesh) and it != 0:
with torch.no_grad():
io_util.cond_mkdir(mesh_dir)
mesh_util.extract_mesh(
model.implicit_surface,
filepath=os.path.join(mesh_dir, '{:08d}.ply'.format(it)),
volume_size=args.data.get('volume_size', 2.0),
show_progress=is_master())
print("Done saving ply!")
except ValueError as e:
print("Couldn't generate ply... Timed out with error {}".format(e))
if it >= args.training.num_iters:
end = True
break
#-------------------
# train
#-------------------
start_time = time.time()
ret = trainer.forward(args, indices, model_input, ground_truth, render_kwargs_train, it)
losses = ret['losses']
extras = ret['extras']
for k, v in losses.items():
# log.info("{}:{} - > {}".format(k, "hi", 'hi'))
# log.info("{}:{} - > {}".format(k, v.shape, v) v.mean().shape))
losses[k] = torch.mean(v)
optimizer.zero_grad()
losses['total'].backward()
# Clip grad norms
train_util.clip_grad_norm(args.training.grad_norm_max,
model=model)
# NOTE: check grad before optimizer.step()
if True:
grad_norms = train_util.calc_grad_norm(model=model)
optimizer.step()
scheduler.step(it) # NOTE: important! when world_size is not 1
#-------------------
# logging
#-------------------
# done every i_save seconds
if (args.training.i_save > 0) and (time.time() - t0 > args.training.i_save):
if is_master():
checkpoint_io.save(filename='latest.pt', global_step=it, epoch_idx=epoch_idx)
# this will be used for plotting
logger.save_stats('stats.p')
t0 = time.time()
if is_master():
#----------------------------------------------------------------------------
#------------------- things only done in master -----------------------------
#----------------------------------------------------------------------------
pbar.set_postfix(lr=optimizer.param_groups[0]['lr'], loss_total=losses['total'].item(), loss_img=losses['loss_img'].item())
if i_backup > 0 and int_it % i_backup == 0 and it > 0:
checkpoint_io.save(filename='{:08d}.pt'.format(it), global_step=it, epoch_idx=epoch_idx)
#----------------------------------------------------------------------------
#------------------- things done in every child process ---------------------------
#----------------------------------------------------------------------------
#-------------------
# log grads and learning rate
for k, v in grad_norms.items():
logger.add('grad', k, v, it)
logger.add('learning rates', 'whole', optimizer.param_groups[0]['lr'], it)
#-------------------
# log losses
for k, v in losses.items():
logger.add('losses', k, v.data.cpu().numpy().item(), it)
#-------------------
# log extras
names = ["radiance", "alpha", "implicit_surface", "implicit_nablas_norm", "sigma_out", "radiance_out",
"d_vals","fres_out","spec_s0","diff_s0", "spec_s0_coarse", "diff_s0_coarse"]
for n in names:
p = "whole"
# key = "raw.{}".format(n)
key = n
if key in extras:
logger.add("extras_{}".format(n), "{}.mean".format(p), extras[key].mean().data.cpu().numpy().item(), it)
logger.add("extras_{}".format(n), "{}.min".format(p), extras[key].min().data.cpu().numpy().item(), it)
logger.add("extras_{}".format(n), "{}.max".format(p), extras[key].max().data.cpu().numpy().item(), it)
logger.add("extras_{}".format(n), "{}.norm".format(p), extras[key].norm().data.cpu().numpy().item(), it)
if 'scalars' in extras:
for k, v in extras['scalars'].items():
logger.add('scalars', k, v.mean(), it)
#---------------------
# end of one iteration
end_time = time.time()
log.debug("=> One iteration time is {:.2f}".format(end_time - start_time))
it += world_size
if is_master():
pbar.update(world_size)
#---------------------
# end of one epoch
epoch_idx += 1
except KeyboardInterrupt:
if is_master():
checkpoint_io.save(filename='latest.pt'.format(it), global_step=it, epoch_idx=epoch_idx)
# this will be used for plotting
logger.save_stats('stats.p')
sys.exit()
if is_master():
checkpoint_io.save(filename='final_{:08d}.pt'.format(it), global_step=it, epoch_idx=epoch_idx)
logger.save_stats('stats.p')
log.info("Everything done.")
if __name__ == "__main__":
# Arguments
parser = io_util.create_args_parser()
parser.add_argument("--ddp", action='store_true', help='whether to use DDP to train.')
parser.add_argument("--port", type=int, default=None, help='master port for multi processing. (if used)')
args, unknown = parser.parse_known_args()
config = io_util.load_config(args, unknown)
main_function(config)