-
Notifications
You must be signed in to change notification settings - Fork 39.6k
/
nvidia-gpus.go
328 lines (290 loc) · 11.9 KB
/
nvidia-gpus.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package scheduling
import (
"context"
"os"
"regexp"
"time"
appsv1 "k8s.io/api/apps/v1"
v1 "k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/api/resource"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/util/uuid"
extensionsinternal "k8s.io/kubernetes/pkg/apis/extensions"
"k8s.io/kubernetes/test/e2e/framework"
e2egpu "k8s.io/kubernetes/test/e2e/framework/gpu"
e2ejob "k8s.io/kubernetes/test/e2e/framework/job"
e2emanifest "k8s.io/kubernetes/test/e2e/framework/manifest"
e2enode "k8s.io/kubernetes/test/e2e/framework/node"
e2epod "k8s.io/kubernetes/test/e2e/framework/pod"
"k8s.io/kubernetes/test/e2e/framework/providers/gce"
e2eresource "k8s.io/kubernetes/test/e2e/framework/resource"
e2eskipper "k8s.io/kubernetes/test/e2e/framework/skipper"
e2etestfiles "k8s.io/kubernetes/test/e2e/framework/testfiles"
imageutils "k8s.io/kubernetes/test/utils/image"
"github.com/onsi/ginkgo"
"github.com/onsi/gomega"
)
const (
testPodNamePrefix = "nvidia-gpu-"
// Nvidia driver installation can take upwards of 5 minutes.
driverInstallTimeout = 10 * time.Minute
)
var (
gpuResourceName v1.ResourceName
)
func makeCudaAdditionDevicePluginTestPod() *v1.Pod {
podName := testPodNamePrefix + string(uuid.NewUUID())
testPod := &v1.Pod{
ObjectMeta: metav1.ObjectMeta{
Name: podName,
},
Spec: v1.PodSpec{
RestartPolicy: v1.RestartPolicyNever,
Containers: []v1.Container{
{
Name: "vector-addition-cuda8",
Image: imageutils.GetE2EImage(imageutils.CudaVectorAdd),
Resources: v1.ResourceRequirements{
Limits: v1.ResourceList{
gpuResourceName: *resource.NewQuantity(1, resource.DecimalSI),
},
},
},
{
Name: "vector-addition-cuda10",
Image: imageutils.GetE2EImage(imageutils.CudaVectorAdd2),
Resources: v1.ResourceRequirements{
Limits: v1.ResourceList{
gpuResourceName: *resource.NewQuantity(1, resource.DecimalSI),
},
},
},
},
},
}
return testPod
}
func logOSImages(f *framework.Framework) {
nodeList, err := f.ClientSet.CoreV1().Nodes().List(context.TODO(), metav1.ListOptions{})
framework.ExpectNoError(err, "getting node list")
for _, node := range nodeList.Items {
framework.Logf("Nodename: %v, OS Image: %v", node.Name, node.Status.NodeInfo.OSImage)
}
}
func areGPUsAvailableOnAllSchedulableNodes(f *framework.Framework) bool {
framework.Logf("Getting list of Nodes from API server")
nodeList, err := f.ClientSet.CoreV1().Nodes().List(context.TODO(), metav1.ListOptions{})
framework.ExpectNoError(err, "getting node list")
for _, node := range nodeList.Items {
if node.Spec.Unschedulable {
continue
}
framework.Logf("gpuResourceName %s", gpuResourceName)
if val, ok := node.Status.Capacity[gpuResourceName]; !ok || val.Value() == 0 {
framework.Logf("Nvidia GPUs not available on Node: %q", node.Name)
return false
}
}
framework.Logf("Nvidia GPUs exist on all schedulable nodes")
return true
}
func getGPUsAvailable(f *framework.Framework) int64 {
nodeList, err := f.ClientSet.CoreV1().Nodes().List(context.TODO(), metav1.ListOptions{})
framework.ExpectNoError(err, "getting node list")
var gpusAvailable int64
for _, node := range nodeList.Items {
if val, ok := node.Status.Allocatable[gpuResourceName]; ok {
gpusAvailable += (&val).Value()
}
}
return gpusAvailable
}
// SetupNVIDIAGPUNode install Nvidia Drivers and wait for Nvidia GPUs to be available on nodes
func SetupNVIDIAGPUNode(f *framework.Framework, setupResourceGatherer bool) *framework.ContainerResourceGatherer {
logOSImages(f)
var err error
var ds *appsv1.DaemonSet
dsYamlURLFromEnv := os.Getenv("NVIDIA_DRIVER_INSTALLER_DAEMONSET")
if dsYamlURLFromEnv != "" {
// Using DaemonSet from remote URL
framework.Logf("Using remote nvidia-driver-installer daemonset manifest from %v", dsYamlURLFromEnv)
ds, err = e2emanifest.DaemonSetFromURL(dsYamlURLFromEnv)
framework.ExpectNoError(err, "failed get remote")
} else {
// Using default local DaemonSet
framework.Logf("Using default local nvidia-driver-installer daemonset manifest.")
data, err := e2etestfiles.Read("test/e2e/testing-manifests/scheduling/nvidia-driver-installer.yaml")
framework.ExpectNoError(err, "failed to read local manifest for nvidia-driver-installer daemonset")
ds, err = e2emanifest.DaemonSetFromData(data)
framework.ExpectNoError(err, "failed to parse local manifest for nvidia-driver-installer daemonset")
}
gpuResourceName = e2egpu.NVIDIAGPUResourceName
ds.Namespace = f.Namespace.Name
_, err = f.ClientSet.AppsV1().DaemonSets(f.Namespace.Name).Create(context.TODO(), ds, metav1.CreateOptions{})
framework.ExpectNoError(err, "failed to create nvidia-driver-installer daemonset")
framework.Logf("Successfully created daemonset to install Nvidia drivers.")
pods, err := e2eresource.WaitForControlledPods(f.ClientSet, ds.Namespace, ds.Name, extensionsinternal.Kind("DaemonSet"))
framework.ExpectNoError(err, "failed to get pods controlled by the nvidia-driver-installer daemonset")
devicepluginPods, err := e2eresource.WaitForControlledPods(f.ClientSet, "kube-system", "nvidia-gpu-device-plugin", extensionsinternal.Kind("DaemonSet"))
if err == nil {
framework.Logf("Adding deviceplugin addon pod.")
pods.Items = append(pods.Items, devicepluginPods.Items...)
}
var rsgather *framework.ContainerResourceGatherer
if setupResourceGatherer {
framework.Logf("Starting ResourceUsageGather for the created DaemonSet pods.")
rsgather, err = framework.NewResourceUsageGatherer(f.ClientSet, framework.ResourceGathererOptions{InKubemark: false, Nodes: framework.AllNodes, ResourceDataGatheringPeriod: 2 * time.Second, ProbeDuration: 2 * time.Second, PrintVerboseLogs: true}, pods)
framework.ExpectNoError(err, "creating ResourceUsageGather for the daemonset pods")
go rsgather.StartGatheringData()
}
// Wait for Nvidia GPUs to be available on nodes
framework.Logf("Waiting for drivers to be installed and GPUs to be available in Node Capacity...")
gomega.Eventually(func() bool {
return areGPUsAvailableOnAllSchedulableNodes(f)
}, driverInstallTimeout, time.Second).Should(gomega.BeTrue())
return rsgather
}
func getGPUsPerPod() int64 {
var gpusPerPod int64
gpuPod := makeCudaAdditionDevicePluginTestPod()
for _, container := range gpuPod.Spec.Containers {
if val, ok := container.Resources.Limits[gpuResourceName]; ok {
gpusPerPod += (&val).Value()
}
}
return gpusPerPod
}
func testNvidiaGPUs(f *framework.Framework) {
rsgather := SetupNVIDIAGPUNode(f, true)
gpuPodNum := getGPUsAvailable(f) / getGPUsPerPod()
framework.Logf("Creating %d pods and have the pods run a CUDA app", gpuPodNum)
podList := []*v1.Pod{}
for i := int64(0); i < gpuPodNum; i++ {
podList = append(podList, f.PodClient().Create(makeCudaAdditionDevicePluginTestPod()))
}
framework.Logf("Wait for all test pods to succeed")
// Wait for all pods to succeed
for _, pod := range podList {
f.PodClient().WaitForSuccess(pod.Name, 5*time.Minute)
logContainers(f, pod)
}
framework.Logf("Stopping ResourceUsageGather")
constraints := make(map[string]framework.ResourceConstraint)
// For now, just gets summary. Can pass valid constraints in the future.
summary, err := rsgather.StopAndSummarize([]int{50, 90, 100}, constraints)
f.TestSummaries = append(f.TestSummaries, summary)
framework.ExpectNoError(err, "getting resource usage summary")
}
func logContainers(f *framework.Framework, pod *v1.Pod) {
for _, container := range pod.Spec.Containers {
logs, err := e2epod.GetPodLogs(f.ClientSet, f.Namespace.Name, pod.Name, container.Name)
framework.ExpectNoError(err, "Should be able to get container logs for container: %s", container.Name)
framework.Logf("Got container logs for %s:\n%v", container.Name, logs)
}
}
var _ = SIGDescribe("[Feature:GPUDevicePlugin]", func() {
f := framework.NewDefaultFramework("device-plugin-gpus")
ginkgo.It("run Nvidia GPU Device Plugin tests", func() {
testNvidiaGPUs(f)
})
})
func testNvidiaGPUsJob(f *framework.Framework) {
_ = SetupNVIDIAGPUNode(f, false)
// Job set to have 5 completions with parallelism of 1 to ensure that it lasts long enough to experience the node recreation
completions := int32(5)
ginkgo.By("Starting GPU job")
StartJob(f, completions)
job, err := e2ejob.GetJob(f.ClientSet, f.Namespace.Name, "cuda-add")
framework.ExpectNoError(err)
// make sure job is running by waiting for its first pod to start running
err = e2ejob.WaitForAllJobPodsRunning(f.ClientSet, f.Namespace.Name, job.Name, 1)
framework.ExpectNoError(err)
numNodes, err := e2enode.TotalRegistered(f.ClientSet)
framework.ExpectNoError(err)
nodes, err := e2enode.CheckReady(f.ClientSet, numNodes, framework.NodeReadyInitialTimeout)
framework.ExpectNoError(err)
ginkgo.By("Recreating nodes")
err = gce.RecreateNodes(f.ClientSet, nodes)
framework.ExpectNoError(err)
ginkgo.By("Done recreating nodes")
ginkgo.By("Waiting for gpu job to finish")
err = e2ejob.WaitForJobFinish(f.ClientSet, f.Namespace.Name, job.Name)
framework.ExpectNoError(err)
ginkgo.By("Done with gpu job")
gomega.Expect(job.Status.Failed).To(gomega.BeZero(), "Job pods failed during node recreation: %v", job.Status.Failed)
VerifyJobNCompletions(f, completions)
}
// StartJob starts a simple CUDA job that requests gpu and the specified number of completions
func StartJob(f *framework.Framework, completions int32) {
var activeSeconds int64 = 3600
testJob := e2ejob.NewTestJob("succeed", "cuda-add", v1.RestartPolicyAlways, 1, completions, &activeSeconds, 6)
testJob.Spec.Template.Spec = v1.PodSpec{
RestartPolicy: v1.RestartPolicyOnFailure,
Containers: []v1.Container{
{
Name: "vector-addition",
Image: imageutils.GetE2EImage(imageutils.CudaVectorAdd),
Command: []string{"/bin/sh", "-c", "./vectorAdd && sleep 60"},
Resources: v1.ResourceRequirements{
Limits: v1.ResourceList{
gpuResourceName: *resource.NewQuantity(1, resource.DecimalSI),
},
},
},
},
}
ns := f.Namespace.Name
_, err := e2ejob.CreateJob(f.ClientSet, ns, testJob)
framework.ExpectNoError(err)
framework.Logf("Created job %v", testJob)
}
// VerifyJobNCompletions verifies that the job has completions number of successful pods
func VerifyJobNCompletions(f *framework.Framework, completions int32) {
ns := f.Namespace.Name
pods, err := e2ejob.GetJobPods(f.ClientSet, f.Namespace.Name, "cuda-add")
framework.ExpectNoError(err)
createdPods := pods.Items
createdPodNames := podNames(createdPods)
framework.Logf("Got the following pods for job cuda-add: %v", createdPodNames)
successes := int32(0)
regex := regexp.MustCompile("PASSED")
for _, podName := range createdPodNames {
f.PodClient().WaitForFinish(podName, 5*time.Minute)
logs, err := e2epod.GetPodLogs(f.ClientSet, ns, podName, "vector-addition")
framework.ExpectNoError(err, "Should be able to get logs for pod %v", podName)
if regex.MatchString(logs) {
successes++
}
}
if successes != completions {
framework.Failf("Only got %v completions. Expected %v completions.", successes, completions)
}
}
func podNames(pods []v1.Pod) []string {
originalPodNames := make([]string, len(pods))
for i, p := range pods {
originalPodNames[i] = p.ObjectMeta.Name
}
return originalPodNames
}
var _ = SIGDescribe("GPUDevicePluginAcrossRecreate [Feature:Recreate]", func() {
ginkgo.BeforeEach(func() {
e2eskipper.SkipUnlessProviderIs("gce", "gke")
})
f := framework.NewDefaultFramework("device-plugin-gpus-recreate")
ginkgo.It("run Nvidia GPU Device Plugin tests with a recreation", func() {
testNvidiaGPUsJob(f)
})
})