-
Notifications
You must be signed in to change notification settings - Fork 0
/
EXAMPLE.prm
77 lines (65 loc) · 1.74 KB
/
EXAMPLE.prm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# -*- mode: python -*-
##########################
# SpikeDetekt parameters #
##########################
experiment_name = 'k401_140826'
raw_data_files = experiment_name + '.raw.kwd'
prb_file = 'A4x8-50.prb'
nbits = 16
voltage_gain = 10.
sample_rate = 30000
nchannels = 32
# Filtering
# ---------
filter_low = 500. # Low pass frequency (Hz)
filter_high = 0.95 * .5 * sample_rate
filter_butter_order = 3 # Order of Butterworth filter.
filter_lfp_low = 0 # LFP filter low-pass frequency
filter_lfp_high = 300 # LFP filter high-pass frequency# Chunks
# ------
chunk_size = int(1. * sample_rate) # 1 second
chunk_overlap = int(.015 * sample_rate) # 15 ms
# Spike detection
# ---------------
# Uniformly scattered chunks, for computing the threshold from the std of the
# signal across the whole recording.
nexcerpts = 50
excerpt_size = int(1. * sample_rate)
threshold_strong_std_factor = 4.5
threshold_weak_std_factor = 2.
detect_spikes = 'negative'
#precomputed_threshold = None
# Connected component
# -------------------
connected_component_join_size = int(.00005 * sample_rate)
# Spike extraction
# ----------------
extract_s_before = 16
extract_s_after = 16
waveforms_nsamples = extract_s_before + extract_s_after
# Features
# --------
nfeatures_per_channel = 3 # Number of features per channel.
pca_nwaveforms_max = 10000
#########################
# KlustaKwik parameters #
#########################
MaskStarts = 100
#MinClusters = 100
#MaxClusters = 110
MaxPossibleClusters = 500
FullStepEvery = 10
MaxIter = 10000
RandomSeed = 654
Debug = 0
SplitFirst = 20
SplitEvery = 100
PenaltyK = 0
PenaltyKLogN = 1
Subset = 1
PriorPoint = 1
SaveSorted = 0
SaveCovarianceMeans = 0
UseMaskedInitialConditions = 1
AssignToFirstClosestMask = 1
UseDistributional = 1