forked from projectcalico/felix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
endpoint_mgr.go
792 lines (727 loc) · 27.9 KB
/
endpoint_mgr.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
// Copyright (c) 2016-2017 Tigera, Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package intdataplane
import (
"fmt"
"io"
"net"
"os"
"reflect"
"regexp"
"strings"
log "github.com/Sirupsen/logrus"
"github.com/projectcalico/felix/ifacemonitor"
"github.com/projectcalico/felix/ip"
"github.com/projectcalico/felix/iptables"
"github.com/projectcalico/felix/proto"
"github.com/projectcalico/felix/routetable"
"github.com/projectcalico/felix/rules"
"github.com/projectcalico/felix/set"
)
type routeTable interface {
SetRoutes(ifaceName string, targets []routetable.Target)
}
// endpointManager manages the dataplane resources that belong to each endpoint as well as
// the "dispatch chains" that fan out packets to the right per-endpoint chain.
//
// It programs the relevant iptables chains (via the iptables.Table objects) along with
// per-endpoint routes (via the RouteTable).
//
// Since calculating the dispatch chains is fairly expensive, the main OnUpdate method
// simply records the pending state of each interface and defers the actual calculation
// to CompleteDeferredWork(). This is also the basis of our failure handling; updates
// that fail are left in the pending state so they can be retried later.
type endpointManager struct {
// Config.
ipVersion uint8
wlIfacesRegexp *regexp.Regexp
// Our dependencies.
rawTable iptablesTable
filterTable iptablesTable
ruleRenderer rules.RuleRenderer
routeTable routeTable
writeProcSys procSysWriter
// Pending updates, cleared in CompleteDeferredWork as the data is copied to the activeXYZ
// fields.
pendingWlEpUpdates map[proto.WorkloadEndpointID]*proto.WorkloadEndpoint
pendingIfaceUpdates map[string]ifacemonitor.State
// Active state, updated in CompleteDeferredWork.
activeWlEndpoints map[proto.WorkloadEndpointID]*proto.WorkloadEndpoint
activeWlIfaceNameToID map[string]proto.WorkloadEndpointID
activeUpIfaces set.Set
activeWlIDToChains map[proto.WorkloadEndpointID][]*iptables.Chain
activeWlDispatchChains map[string]*iptables.Chain
// wlIfaceNamesToReconfigure contains names of workload interfaces that need to have
// their configuration (sysctls etc.) refreshed.
wlIfaceNamesToReconfigure set.Set
// epIDsToUpdateStatus contains IDs of endpoints that we need to report status for.
// Mix of host and workload endpoint IDs.
epIDsToUpdateStatus set.Set
// hostIfaceToAddrs maps host interface name to the set of IPs on that interface (reported
// fro the dataplane).
hostIfaceToAddrs map[string]set.Set
// rawHostEndpoints contains the raw (i.e. not resolved to interface) host endpoints.
rawHostEndpoints map[proto.HostEndpointID]*proto.HostEndpoint
// hostEndpointsDirty is set to true when host endpoints are updated.
hostEndpointsDirty bool
// activeHostIfaceToChains maps host interface name to the chains that we've programmed.
activeHostIfaceToRawChains map[string][]*iptables.Chain
activeHostIfaceToFiltChains map[string][]*iptables.Chain
// Dispatch chains that we've programmed for host endpoints.
activeHostRawDispatchChains map[string]*iptables.Chain
activeHostFiltDispatchChains map[string]*iptables.Chain
// activeHostEpIDToIfaceNames records which interfaces we resolved each host endpoint to.
activeHostEpIDToIfaceNames map[proto.HostEndpointID][]string
// activeIfaceNameToHostEpID records which endpoint we resolved each host interface to.
activeIfaceNameToHostEpID map[string]proto.HostEndpointID
needToCheckDispatchChains bool
// Callbacks
OnEndpointStatusUpdate EndpointStatusUpdateCallback
}
type EndpointStatusUpdateCallback func(ipVersion uint8, id interface{}, status string)
type procSysWriter func(path, value string) error
func newEndpointManager(
rawTable iptablesTable,
filterTable iptablesTable,
ruleRenderer rules.RuleRenderer,
routeTable routeTable,
ipVersion uint8,
wlInterfacePrefixes []string,
onWorkloadEndpointStatusUpdate EndpointStatusUpdateCallback,
) *endpointManager {
return newEndpointManagerWithShims(
rawTable,
filterTable,
ruleRenderer,
routeTable,
ipVersion,
wlInterfacePrefixes,
onWorkloadEndpointStatusUpdate,
writeProcSys,
)
}
func newEndpointManagerWithShims(
rawTable iptablesTable,
filterTable iptablesTable,
ruleRenderer rules.RuleRenderer,
routeTable routeTable,
ipVersion uint8,
wlInterfacePrefixes []string,
onWorkloadEndpointStatusUpdate EndpointStatusUpdateCallback,
procSysWriter procSysWriter,
) *endpointManager {
wlIfacesPattern := "^(" + strings.Join(wlInterfacePrefixes, "|") + ").*"
wlIfacesRegexp := regexp.MustCompile(wlIfacesPattern)
return &endpointManager{
ipVersion: ipVersion,
wlIfacesRegexp: wlIfacesRegexp,
rawTable: rawTable,
filterTable: filterTable,
ruleRenderer: ruleRenderer,
routeTable: routeTable,
writeProcSys: procSysWriter,
// Pending updates, we store these up as OnUpdate is called, then process them
// in CompleteDeferredWork and transfer the important data to the activeXYX fields.
pendingWlEpUpdates: map[proto.WorkloadEndpointID]*proto.WorkloadEndpoint{},
pendingIfaceUpdates: map[string]ifacemonitor.State{},
activeUpIfaces: set.New(),
activeWlEndpoints: map[proto.WorkloadEndpointID]*proto.WorkloadEndpoint{},
activeWlIfaceNameToID: map[string]proto.WorkloadEndpointID{},
activeWlIDToChains: map[proto.WorkloadEndpointID][]*iptables.Chain{},
wlIfaceNamesToReconfigure: set.New(),
epIDsToUpdateStatus: set.New(),
hostIfaceToAddrs: map[string]set.Set{},
rawHostEndpoints: map[proto.HostEndpointID]*proto.HostEndpoint{},
hostEndpointsDirty: true,
activeHostIfaceToRawChains: map[string][]*iptables.Chain{},
activeHostIfaceToFiltChains: map[string][]*iptables.Chain{},
// Caches of the current dispatch chains indexed by chain name. We use these to
// calculate deltas when we need to update the chains.
activeWlDispatchChains: map[string]*iptables.Chain{},
activeHostFiltDispatchChains: map[string]*iptables.Chain{},
activeHostRawDispatchChains: map[string]*iptables.Chain{},
needToCheckDispatchChains: true, // Need to do start-of-day update.
OnEndpointStatusUpdate: onWorkloadEndpointStatusUpdate,
}
}
func (m *endpointManager) OnUpdate(protoBufMsg interface{}) {
log.WithField("msg", protoBufMsg).Debug("Received message")
switch msg := protoBufMsg.(type) {
case *proto.WorkloadEndpointUpdate:
m.pendingWlEpUpdates[*msg.Id] = msg.Endpoint
case *proto.WorkloadEndpointRemove:
m.pendingWlEpUpdates[*msg.Id] = nil
case *proto.HostEndpointUpdate:
log.WithField("msg", msg).Debug("Host endpoint update")
m.rawHostEndpoints[*msg.Id] = msg.Endpoint
m.hostEndpointsDirty = true
m.epIDsToUpdateStatus.Add(*msg.Id)
case *proto.HostEndpointRemove:
log.WithField("msg", msg).Debug("Host endpoint removed")
delete(m.rawHostEndpoints, *msg.Id)
m.hostEndpointsDirty = true
m.epIDsToUpdateStatus.Add(*msg.Id)
case *ifaceUpdate:
log.WithField("update", msg).Debug("Interface state changed.")
m.pendingIfaceUpdates[msg.Name] = msg.State
case *ifaceAddrsUpdate:
log.WithField("update", msg).Debug("Interface addrs changed.")
if m.wlIfacesRegexp.MatchString(msg.Name) {
log.WithField("update", msg).Debug("Workload interface, ignoring.")
return
}
if msg.Addrs != nil {
m.hostIfaceToAddrs[msg.Name] = msg.Addrs
} else {
delete(m.hostIfaceToAddrs, msg.Name)
}
m.hostEndpointsDirty = true
}
}
func (m *endpointManager) CompleteDeferredWork() error {
// Copy the pending interface state to the active set and mark any interfaces that have
// changed state for reconfiguration by resolveWorkload/HostEndpoints()
for ifaceName, state := range m.pendingIfaceUpdates {
if state == ifacemonitor.StateUp {
m.activeUpIfaces.Add(ifaceName)
if m.wlIfacesRegexp.MatchString(ifaceName) {
log.WithField("ifaceName", ifaceName).Info(
"Workload interface came up, marking for reconfiguration.")
m.wlIfaceNamesToReconfigure.Add(ifaceName)
}
} else {
m.activeUpIfaces.Discard(ifaceName)
}
// If this interface is linked to any already-existing endpoints, mark the endpoint
// status for recalculation. If the matching endpoint changes when we do
// resolveHostEndpoints() then that will mark old and new matching endpoints for
// update.
m.markEndpointStatusDirtyByIface(ifaceName)
// Clean up as we go...
delete(m.pendingIfaceUpdates, ifaceName)
}
m.resolveWorkloadEndpoints()
if m.hostEndpointsDirty {
log.Debug("Host endpoints updated, resolving them.")
m.resolveHostEndpoints()
m.hostEndpointsDirty = false
}
// Now send any endpoint status updates.
m.updateEndpointStatuses()
return nil
}
func (m *endpointManager) markEndpointStatusDirtyByIface(ifaceName string) {
logCxt := log.WithField("ifaceName", ifaceName)
if epID, ok := m.activeWlIfaceNameToID[ifaceName]; ok {
logCxt.Info("Workload interface state changed; marking for status update.")
m.epIDsToUpdateStatus.Add(epID)
} else if epID, ok := m.activeIfaceNameToHostEpID[ifaceName]; ok {
logCxt.Info("Host interface state changed; marking for status update.")
m.epIDsToUpdateStatus.Add(epID)
} else {
// We don't know about this interface yet (or it's already been deleted).
// If the endpoint gets created, we'll do the update then. If it's been
// deleted, we've already cleaned it up.
logCxt.Debug("Ignoring interface state change for unknown interface.")
}
}
func (m *endpointManager) updateEndpointStatuses() {
log.WithField("dirtyEndpoints", m.epIDsToUpdateStatus).Debug("Reporting endpoint status.")
m.epIDsToUpdateStatus.Iter(func(item interface{}) error {
switch id := item.(type) {
case proto.WorkloadEndpointID:
status := m.calculateWorkloadEndpointStatus(id)
m.OnEndpointStatusUpdate(m.ipVersion, id, status)
case proto.HostEndpointID:
status := m.calculateHostEndpointStatus(id)
m.OnEndpointStatusUpdate(m.ipVersion, id, status)
}
return set.RemoveItem
})
}
func (m *endpointManager) calculateWorkloadEndpointStatus(id proto.WorkloadEndpointID) string {
logCxt := log.WithField("workloadEndpointID", id)
logCxt.Debug("Re-evaluating workload endpoint status")
var operUp, adminUp, failed bool
workload, known := m.activeWlEndpoints[id]
if known {
adminUp = workload.State == "active"
operUp = m.activeUpIfaces.Contains(workload.Name)
failed = m.wlIfaceNamesToReconfigure.Contains(workload.Name)
}
// Note: if endpoint is not known (i.e. has been deleted), status will be "", which signals
// a deletion.
var status string
if known {
if failed {
status = "error"
} else if operUp && adminUp {
status = "up"
} else {
status = "down"
}
}
logCxt = logCxt.WithFields(log.Fields{
"known": known,
"failed": failed,
"operUp": operUp,
"adminUp": adminUp,
"status": status,
})
logCxt.Info("Re-evaluated workload endpoint status")
return status
}
func (m *endpointManager) calculateHostEndpointStatus(id proto.HostEndpointID) (status string) {
logCxt := log.WithField("hostEndpointID", id)
logCxt.Debug("Re-evaluating host endpoint status")
var resolved, operUp bool
_, known := m.rawHostEndpoints[id]
// Note: if endpoint is not known (i.e. has been deleted), status will be "", which signals
// a deletion.
if known {
ifaceNames := m.activeHostEpIDToIfaceNames[id]
if len(ifaceNames) > 0 {
resolved = true
operUp = true
for _, ifaceName := range ifaceNames {
ifaceUp := m.activeUpIfaces.Contains(ifaceName)
logCxt.WithFields(log.Fields{
"ifaceName": ifaceName,
"ifaceUp": ifaceUp,
}).Debug("Status of matching interface.")
operUp = operUp && ifaceUp
}
}
if resolved && operUp {
status = "up"
} else if resolved {
status = "down"
} else {
// Known but failed to resolve, map that to error.
status = "error"
}
}
logCxt = logCxt.WithFields(log.Fields{
"known": known,
"resolved": resolved,
"operUp": operUp,
"status": status,
})
logCxt.Info("Re-evaluated host endpoint status")
return status
}
func (m *endpointManager) resolveWorkloadEndpoints() {
if len(m.pendingWlEpUpdates) > 0 {
// We're about to make endpoint updates, make sure we recheck the dispatch chains.
m.needToCheckDispatchChains = true
}
// Update any dirty endpoints.
for id, workload := range m.pendingWlEpUpdates {
logCxt := log.WithField("id", id)
oldWorkload := m.activeWlEndpoints[id]
if workload != nil {
logCxt.Info("Updating per-endpoint chains.")
if oldWorkload != nil && oldWorkload.Name != workload.Name {
logCxt.Debug("Interface name changed, cleaning up old state")
m.filterTable.RemoveChains(m.activeWlIDToChains[id])
m.routeTable.SetRoutes(oldWorkload.Name, nil)
m.wlIfaceNamesToReconfigure.Discard(oldWorkload.Name)
delete(m.activeWlIfaceNameToID, oldWorkload.Name)
}
var policyNames []string
if len(workload.Tiers) > 0 {
policyNames = workload.Tiers[0].Policies
}
adminUp := workload.State == "active"
chains := m.ruleRenderer.WorkloadEndpointToIptablesChains(
workload.Name,
adminUp,
policyNames,
workload.ProfileIds,
)
m.filterTable.UpdateChains(chains)
m.activeWlIDToChains[id] = chains
// Collect the IP prefixes that we want to route locally to this endpoint:
logCxt.Info("Updating endpoint routes.")
var (
ipStrings []string
natInfos []*proto.NatInfo
addrSuffix string
)
if m.ipVersion == 4 {
ipStrings = workload.Ipv4Nets
natInfos = workload.Ipv4Nat
addrSuffix = "/32"
} else {
ipStrings = workload.Ipv6Nets
natInfos = workload.Ipv6Nat
addrSuffix = "/128"
}
if len(natInfos) != 0 {
old := ipStrings
ipStrings = make([]string, len(old)+len(natInfos))
copy(ipStrings, old)
for ii, natInfo := range natInfos {
ipStrings[len(old)+ii] = natInfo.ExtIp + addrSuffix
}
}
var mac net.HardwareAddr
if workload.Mac != "" {
var err error
mac, err = net.ParseMAC(workload.Mac)
if err != nil {
logCxt.WithError(err).Error(
"Failed to parse endpoint's MAC address")
}
}
var routeTargets []routetable.Target
if adminUp {
logCxt.Debug("Endpoint up, adding routes")
for _, s := range ipStrings {
routeTargets = append(routeTargets, routetable.Target{
CIDR: ip.MustParseCIDR(s),
DestMAC: mac,
})
}
} else {
logCxt.Debug("Endpoint down, removing routes")
}
m.routeTable.SetRoutes(workload.Name, routeTargets)
m.wlIfaceNamesToReconfigure.Add(workload.Name)
m.activeWlEndpoints[id] = workload
m.activeWlIfaceNameToID[workload.Name] = id
delete(m.pendingWlEpUpdates, id)
} else {
logCxt.Info("Workload removed, deleting its chains.")
m.filterTable.RemoveChains(m.activeWlIDToChains[id])
if oldWorkload != nil {
// Remove any routes from the routing table. The RouteTable will
// remove any conntrack entries as a side-effect.
logCxt.Info("Workload removed, deleting old state.")
m.routeTable.SetRoutes(oldWorkload.Name, nil)
m.wlIfaceNamesToReconfigure.Discard(oldWorkload.Name)
delete(m.activeWlIfaceNameToID, oldWorkload.Name)
}
delete(m.activeWlEndpoints, id)
delete(m.pendingWlEpUpdates, id)
}
// Update or deletion, make sure we update the interface status.
m.epIDsToUpdateStatus.Add(id)
}
if m.needToCheckDispatchChains {
// Rewrite the dispatch chains if they've changed.
newDispatchChains := m.ruleRenderer.WorkloadDispatchChains(m.activeWlEndpoints)
m.updateDispatchChains(m.activeWlDispatchChains, newDispatchChains, m.filterTable)
m.needToCheckDispatchChains = false
}
m.wlIfaceNamesToReconfigure.Iter(func(item interface{}) error {
ifaceName := item.(string)
err := m.configureInterface(ifaceName)
if err != nil {
log.WithError(err).Warn("Failed to configure interface, will retry")
return nil
}
return set.RemoveItem
})
}
func (m *endpointManager) resolveHostEndpoints() {
// Host endpoint resolution
// ------------------------
//
// There is a set of non-workload interfaces on the local host, each possibly with
// IP addresses, that might be controlled by HostEndpoint resources in the Calico
// data model. The data model syntactically allows multiple HostEndpoint
// resources to match a given interface - for example, an interface 'eth1' might
// have address 10.240.0.34 and 172.19.2.98, and the data model might include:
//
// - HostEndpoint A with Name 'eth1'
//
// - HostEndpoint B with ExpectedIpv4Addrs including '10.240.0.34'
//
// - HostEndpoint C with ExpectedIpv4Addrs including '172.19.2.98'.
//
// but at runtime, at any given time, we only allow one HostEndpoint to govern
// that interface. That HostEndpoint becomes the active one, and the others
// remain inactive. (But if, for example, the active HostEndpoint resource was
// deleted, then one of the inactive ones could take over.) Given multiple
// matching HostEndpoint resources, the one that wins is the one with the
// alphabetically earliest HostEndpointId
//
// So the process here is not about 'resolving' a particular HostEndpoint on its
// own. Rather it is looking at the set of local non-workload interfaces and
// seeing which of them are matched by the current set of HostEndpoints as a
// whole.
newIfaceNameToHostEpID := map[string]proto.HostEndpointID{}
newUntrackedIfaceNameToHostEpID := map[string]proto.HostEndpointID{}
newHostEpIDToIfaceNames := map[proto.HostEndpointID][]string{}
for ifaceName, ifaceAddrs := range m.hostIfaceToAddrs {
ifaceCxt := log.WithFields(log.Fields{
"ifaceName": ifaceName,
"ifaceAddrs": ifaceAddrs,
})
bestHostEpId := proto.HostEndpointID{}
var bestHostEp proto.HostEndpoint
HostEpLoop:
for id, hostEp := range m.rawHostEndpoints {
logCxt := ifaceCxt.WithField("id", id)
logCxt.WithField("bestHostEpId", bestHostEpId).Debug("See if HostEp matches interface")
if (bestHostEpId.EndpointId != "") && (bestHostEpId.EndpointId < id.EndpointId) {
// We already have a HostEndpointId that is better than
// this one, so no point looking any further.
logCxt.Debug("No better than existing match")
continue
}
if hostEp.Name == ifaceName {
// The HostEndpoint has an explicit name that matches the
// interface.
logCxt.Debug("Match on explicit iface name")
bestHostEpId = id
bestHostEp = *hostEp
continue
} else if hostEp.Name != "" {
// The HostEndpoint has an explicit name that isn't this
// interface. Continue, so as not to allow it to match on
// an IP address instead.
logCxt.Debug("Rejected on explicit iface name")
continue
}
for _, wantedList := range [][]string{hostEp.ExpectedIpv4Addrs, hostEp.ExpectedIpv6Addrs} {
for _, wanted := range wantedList {
logCxt.WithField("wanted", wanted).Debug("Address wanted by HostEp")
if ifaceAddrs.Contains(wanted) {
// The HostEndpoint expects an IP address
// that is on this interface.
logCxt.Debug("Match on address")
bestHostEpId = id
bestHostEp = *hostEp
continue HostEpLoop
}
}
}
}
if bestHostEpId.EndpointId != "" {
logCxt := log.WithFields(log.Fields{
"ifaceName": ifaceName,
"bestHostEpId": bestHostEpId,
})
logCxt.Debug("Got HostEp for interface")
newIfaceNameToHostEpID[ifaceName] = bestHostEpId
if len(bestHostEp.UntrackedTiers) > 0 {
// Optimisation: only add the endpoint chains to the raw (untracked)
// table if there's some untracked policy to apply. This reduces
// per-packet latency since every packet has to traverse the raw
// table.
logCxt.Debug("Endpoint has untracked policies.")
newUntrackedIfaceNameToHostEpID[ifaceName] = bestHostEpId
}
// Note, in contrast to the check above, we unconditionally record the
// match in newHostEpIDToIfaceNames so that we always render the endpoint
// into the filter table. This ensures that we get the correct "default
// drop" behaviour and that failsafe rules are applied correctly.
newHostEpIDToIfaceNames[bestHostEpId] = append(
newHostEpIDToIfaceNames[bestHostEpId], ifaceName)
}
oldID, wasKnown := m.activeIfaceNameToHostEpID[ifaceName]
newID, isKnown := newIfaceNameToHostEpID[ifaceName]
if oldID != newID {
logCxt := ifaceCxt.WithFields(log.Fields{
"oldID": m.activeIfaceNameToHostEpID[ifaceName],
"newID": newIfaceNameToHostEpID[ifaceName],
})
logCxt.Info("Endpoint matching interface changed")
if wasKnown {
logCxt.Debug("Endpoint was known, updating old endpoint status")
m.epIDsToUpdateStatus.Add(oldID)
}
if isKnown {
logCxt.Debug("Endpoint is known, updating new endpoint status")
m.epIDsToUpdateStatus.Add(newID)
}
}
}
// Set up programming for the host endpoints that are now to be used.
newHostIfaceFiltChains := map[string][]*iptables.Chain{}
for ifaceName, id := range newIfaceNameToHostEpID {
log.WithField("id", id).Info("Updating host endpoint chains.")
hostEp := m.rawHostEndpoints[id]
// Update the filter chain, for normal traffic.
var policyNames []string
if len(hostEp.Tiers) > 0 {
policyNames = hostEp.Tiers[0].Policies
}
filtChains := m.ruleRenderer.HostEndpointToFilterChains(
ifaceName,
policyNames,
hostEp.ProfileIds,
)
if !reflect.DeepEqual(filtChains, m.activeHostIfaceToFiltChains[ifaceName]) {
m.filterTable.UpdateChains(filtChains)
}
newHostIfaceFiltChains[ifaceName] = filtChains
delete(m.activeHostIfaceToFiltChains, ifaceName)
}
newHostIfaceRawChains := map[string][]*iptables.Chain{}
for ifaceName, id := range newUntrackedIfaceNameToHostEpID {
log.WithField("id", id).Info("Updating host endpoint raw chains.")
hostEp := m.rawHostEndpoints[id]
// Update the raw chain, for untracked traffic.
var policyNames []string
if len(hostEp.UntrackedTiers) > 0 {
policyNames = hostEp.UntrackedTiers[0].Policies
}
rawChains := m.ruleRenderer.HostEndpointToRawChains(
ifaceName,
policyNames,
)
if !reflect.DeepEqual(rawChains, m.activeHostIfaceToRawChains[ifaceName]) {
m.rawTable.UpdateChains(rawChains)
}
newHostIfaceRawChains[ifaceName] = rawChains
delete(m.activeHostIfaceToRawChains, ifaceName)
}
// Remove programming for host endpoints that are not now in use.
for ifaceName, chains := range m.activeHostIfaceToFiltChains {
log.WithField("ifaceName", ifaceName).Info(
"Host interface no longer protected, deleting its tracked chains.")
m.filterTable.RemoveChains(chains)
}
for ifaceName, chains := range m.activeHostIfaceToRawChains {
log.WithField("ifaceName", ifaceName).Info(
"Host interface no longer protected, deleting its untracked chains.")
m.rawTable.RemoveChains(chains)
}
// Remember the host endpoints that are now in use.
m.activeIfaceNameToHostEpID = newIfaceNameToHostEpID
m.activeHostEpIDToIfaceNames = newHostEpIDToIfaceNames
m.activeHostIfaceToFiltChains = newHostIfaceFiltChains
m.activeHostIfaceToRawChains = newHostIfaceRawChains
// Rewrite the filter dispatch chains if they've changed.
log.WithField("resolvedHostEpIds", newIfaceNameToHostEpID).Debug("Rewrite dispatch chains?")
newFiltDispatchChains := m.ruleRenderer.HostDispatchChains(newIfaceNameToHostEpID)
m.updateDispatchChains(m.activeHostFiltDispatchChains, newFiltDispatchChains, m.filterTable)
// Rewrite the raw dispatch chains if they've changed.
newRawDispatchChains := m.ruleRenderer.HostDispatchChains(newUntrackedIfaceNameToHostEpID)
m.updateDispatchChains(m.activeHostRawDispatchChains, newRawDispatchChains, m.rawTable)
log.Debug("Done resolving host endpoints.")
}
// updateDispatchChains updates one of the sets of dispatch chains. It sends the changes to the
// given iptables.Table and records the updates in the activeChains map.
//
// Calculating the minimum update prevents log spam and reduces the work needed in the Table.
func (m *endpointManager) updateDispatchChains(
activeChains map[string]*iptables.Chain,
newChains []*iptables.Chain,
table iptablesTable,
) {
seenChains := set.New()
for _, newChain := range newChains {
seenChains.Add(newChain.Name)
oldChain := activeChains[newChain.Name]
if !reflect.DeepEqual(newChain, oldChain) {
table.UpdateChain(newChain)
activeChains[newChain.Name] = newChain
}
}
for name := range activeChains {
if !seenChains.Contains(name) {
table.RemoveChainByName(name)
delete(activeChains, name)
}
}
}
func (m *endpointManager) configureInterface(name string) error {
if !m.activeUpIfaces.Contains(name) {
log.WithField("ifaceName", name).Info(
"Skipping configuration of interface because it is oper down.")
return nil
}
log.WithField("ifaceName", name).Info(
"Applying /proc/sys configuration to interface.")
if m.ipVersion == 4 {
// Enable strict reverse-path filtering. This prevents a workload from spoofing its
// IP address. Non-privileged containers have additional anti-spoofing protection
// but VM workloads, for example, can easily spoof their IP.
err := m.writeProcSys(fmt.Sprintf("/proc/sys/net/ipv4/conf/%s/rp_filter", name), "1")
if err != nil {
return err
}
// Enable routing to localhost. This is required to allow for NAT to the local
// host.
err = m.writeProcSys(fmt.Sprintf("/proc/sys/net/ipv4/conf/%s/route_localnet", name), "1")
if err != nil {
return err
}
// Enable proxy ARP, this makes the host respond to all ARP requests with its own
// MAC. This has a couple of advantages:
//
// - In OpenStack, we're forced to configure the guest's networking using DHCP.
// Since DHCP requires a subnet and gateway, representing the Calico network
// in the natural way would lose a lot of IP addresses. For IPv4, we'd have to
// advertise a distinct /30 to each guest, which would use up 4 IPs per guest.
// Using proxy ARP, we can advertise the whole pool to each guest as its subnet
// but have the host respond to all ARP requests and route all the traffic whether
// it is on or off subnet.
//
// - For containers, we install explicit routes into the containers network
// namespace and we use a link-local address for the gateway. Turing on proxy ARP
// means that we don't need to assign the link local address explicitly to each
// host side of the veth, which is one fewer thing to maintain and one fewer
// thing we may clash over.
err = m.writeProcSys(fmt.Sprintf("/proc/sys/net/ipv4/conf/%s/proxy_arp", name), "1")
if err != nil {
return err
}
// Normally, the kernel has a delay before responding to proxy ARP but we know
// that's not needed in a Calico network so we disable it.
err = m.writeProcSys(fmt.Sprintf("/proc/sys/net/ipv4/neigh/%s/proxy_delay", name), "0")
if err != nil {
return err
}
// Enable IP forwarding of packets coming _from_ this interface. For packets to
// be forwarded in both directions we need this flag to be set on the fabric-facing
// interface too (or for the global default to be set).
err = m.writeProcSys(fmt.Sprintf("/proc/sys/net/ipv4/conf/%s/forwarding", name), "1")
if err != nil {
return err
}
} else {
// Enable proxy NDP, similarly to proxy ARP, described above.
err := m.writeProcSys(fmt.Sprintf("/proc/sys/net/ipv6/conf/%s/proxy_ndp", name), "1")
if err != nil {
return err
}
// Enable IP forwarding of packets coming _from_ this interface. For packets to
// be forwarded in both directions we need this flag to be set on the fabric-facing
// interface too (or for the global default to be set).
err = m.writeProcSys(fmt.Sprintf("/proc/sys/net/ipv6/conf/%s/forwarding", name), "1")
if err != nil {
return err
}
}
return nil
}
func writeProcSys(path, value string) error {
f, err := os.OpenFile(path, os.O_WRONLY, 0)
if err != nil {
return err
}
n, err := f.Write([]byte(value))
if err == nil && n < len(value) {
err = io.ErrShortWrite
}
if err1 := f.Close(); err == nil {
err = err1
}
return err
}