-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
base.ts
484 lines (418 loc) Β· 12 KB
/
base.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import type { Tiktoken, TiktokenModel } from "js-tiktoken/lite";
import { type BaseCache, InMemoryCache } from "../caches.js";
import {
type BasePromptValueInterface,
StringPromptValue,
ChatPromptValue,
} from "../prompt_values.js";
import {
type BaseMessage,
type BaseMessageLike,
type MessageContent,
coerceMessageLikeToMessage,
} from "../messages/index.js";
import { type LLMResult } from "../outputs.js";
import { CallbackManager, Callbacks } from "../callbacks/manager.js";
import { AsyncCaller, AsyncCallerParams } from "../utils/async_caller.js";
import { encodingForModel } from "../utils/tiktoken.js";
import { Runnable, type RunnableInterface } from "../runnables/base.js";
import { RunnableConfig } from "../runnables/config.js";
// https://www.npmjs.com/package/js-tiktoken
export const getModelNameForTiktoken = (modelName: string): TiktokenModel => {
if (modelName.startsWith("gpt-3.5-turbo-16k")) {
return "gpt-3.5-turbo-16k";
}
if (modelName.startsWith("gpt-3.5-turbo-")) {
return "gpt-3.5-turbo";
}
if (modelName.startsWith("gpt-4-32k")) {
return "gpt-4-32k";
}
if (modelName.startsWith("gpt-4-")) {
return "gpt-4";
}
return modelName as TiktokenModel;
};
export const getEmbeddingContextSize = (modelName?: string): number => {
switch (modelName) {
case "text-embedding-ada-002":
return 8191;
default:
return 2046;
}
};
export const getModelContextSize = (modelName: string): number => {
switch (getModelNameForTiktoken(modelName)) {
case "gpt-3.5-turbo-16k":
return 16384;
case "gpt-3.5-turbo":
return 4096;
case "gpt-4-32k":
return 32768;
case "gpt-4":
return 8192;
case "text-davinci-003":
return 4097;
case "text-curie-001":
return 2048;
case "text-babbage-001":
return 2048;
case "text-ada-001":
return 2048;
case "code-davinci-002":
return 8000;
case "code-cushman-001":
return 2048;
default:
return 4097;
}
};
interface CalculateMaxTokenProps {
prompt: string;
modelName: TiktokenModel;
}
export const calculateMaxTokens = async ({
prompt,
modelName,
}: CalculateMaxTokenProps) => {
let numTokens;
try {
numTokens = (
await encodingForModel(getModelNameForTiktoken(modelName))
).encode(prompt).length;
} catch (error) {
console.warn(
"Failed to calculate number of tokens, falling back to approximate count"
);
// fallback to approximate calculation if tiktoken is not available
// each token is ~4 characters: https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them#
numTokens = Math.ceil(prompt.length / 4);
}
const maxTokens = getModelContextSize(modelName);
return maxTokens - numTokens;
};
const getVerbosity = () => false;
export type SerializedLLM = {
_model: string;
_type: string;
// eslint-disable-next-line @typescript-eslint/no-explicit-any
} & Record<string, any>;
export interface BaseLangChainParams {
verbose?: boolean;
callbacks?: Callbacks;
tags?: string[];
metadata?: Record<string, unknown>;
}
/**
* Base class for language models, chains, tools.
*/
export abstract class BaseLangChain<
RunInput,
RunOutput,
CallOptions extends RunnableConfig = RunnableConfig
>
extends Runnable<RunInput, RunOutput, CallOptions>
implements BaseLangChainParams
{
/**
* Whether to print out response text.
*/
verbose: boolean;
callbacks?: Callbacks;
tags?: string[];
metadata?: Record<string, unknown>;
get lc_attributes(): { [key: string]: undefined } | undefined {
return {
callbacks: undefined,
verbose: undefined,
};
}
constructor(params: BaseLangChainParams) {
super(params);
this.verbose = params.verbose ?? getVerbosity();
this.callbacks = params.callbacks;
this.tags = params.tags ?? [];
this.metadata = params.metadata ?? {};
}
}
/**
* Base interface for language model parameters.
* A subclass of {@link BaseLanguageModel} should have a constructor that
* takes in a parameter that extends this interface.
*/
export interface BaseLanguageModelParams
extends AsyncCallerParams,
BaseLangChainParams {
/**
* @deprecated Use `callbacks` instead
*/
callbackManager?: CallbackManager;
cache?: BaseCache | boolean;
}
export interface BaseLanguageModelCallOptions extends RunnableConfig {
/**
* Stop tokens to use for this call.
* If not provided, the default stop tokens for the model will be used.
*/
stop?: string[];
/**
* Timeout for this call in milliseconds.
*/
timeout?: number;
/**
* Abort signal for this call.
* If provided, the call will be aborted when the signal is aborted.
* @see https://developer.mozilla.org/en-US/docs/Web/API/AbortSignal
*/
signal?: AbortSignal;
}
export interface FunctionDefinition {
/**
* The name of the function to be called. Must be a-z, A-Z, 0-9, or contain
* underscores and dashes, with a maximum length of 64.
*/
name: string;
/**
* The parameters the functions accepts, described as a JSON Schema object. See the
* [guide](https://platform.openai.com/docs/guides/gpt/function-calling) for
* examples, and the
* [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for
* documentation about the format.
*
* To describe a function that accepts no parameters, provide the value
* `{"type": "object", "properties": {}}`.
*/
parameters: Record<string, unknown>;
/**
* A description of what the function does, used by the model to choose when and
* how to call the function.
*/
description?: string;
}
export interface ToolDefinition {
type: "function";
function: FunctionDefinition;
}
export type FunctionCallOption = {
name: string;
};
export interface BaseFunctionCallOptions extends BaseLanguageModelCallOptions {
function_call?: FunctionCallOption;
functions?: FunctionDefinition[];
}
export type BaseLanguageModelInput =
| BasePromptValueInterface
| string
| BaseMessageLike[];
export interface BaseLanguageModelInterface<
// eslint-disable-next-line @typescript-eslint/no-explicit-any
RunOutput = any,
CallOptions extends BaseLanguageModelCallOptions = BaseLanguageModelCallOptions
> extends RunnableInterface<BaseLanguageModelInput, RunOutput, CallOptions> {
get callKeys(): string[];
generatePrompt(
promptValues: BasePromptValueInterface[],
options?: string[] | CallOptions,
callbacks?: Callbacks
): Promise<LLMResult>;
/**
* @deprecated Use .invoke() instead. Will be removed in 0.2.0.
*/
predict(
text: string,
options?: string[] | CallOptions,
callbacks?: Callbacks
): Promise<string>;
/**
* @deprecated Use .invoke() instead. Will be removed in 0.2.0.
*/
predictMessages(
messages: BaseMessage[],
options?: string[] | CallOptions,
callbacks?: Callbacks
): Promise<BaseMessage>;
_modelType(): string;
_llmType(): string;
getNumTokens(content: MessageContent): Promise<number>;
/**
* Get the identifying parameters of the LLM.
*/
// eslint-disable-next-line @typescript-eslint/no-explicit-any
_identifyingParams(): Record<string, any>;
serialize(): SerializedLLM;
}
export type LanguageModelOutput = BaseMessage | string;
export type LanguageModelLike = Runnable<
BaseLanguageModelInput,
LanguageModelOutput
>;
/**
* Base class for language models.
*/
export abstract class BaseLanguageModel<
// eslint-disable-next-line @typescript-eslint/no-explicit-any
RunOutput = any,
CallOptions extends BaseLanguageModelCallOptions = BaseLanguageModelCallOptions
>
extends BaseLangChain<BaseLanguageModelInput, RunOutput, CallOptions>
implements
BaseLanguageModelParams,
BaseLanguageModelInterface<RunOutput, CallOptions>
{
/**
* Keys that the language model accepts as call options.
*/
get callKeys(): string[] {
return ["stop", "timeout", "signal", "tags", "metadata", "callbacks"];
}
/**
* The async caller should be used by subclasses to make any async calls,
* which will thus benefit from the concurrency and retry logic.
*/
caller: AsyncCaller;
cache?: BaseCache;
constructor({
callbacks,
callbackManager,
...params
}: BaseLanguageModelParams) {
super({
callbacks: callbacks ?? callbackManager,
...params,
});
if (typeof params.cache === "object") {
this.cache = params.cache;
} else if (params.cache) {
this.cache = InMemoryCache.global();
} else {
this.cache = undefined;
}
this.caller = new AsyncCaller(params ?? {});
}
abstract generatePrompt(
promptValues: BasePromptValueInterface[],
options?: string[] | CallOptions,
callbacks?: Callbacks
): Promise<LLMResult>;
/**
* @deprecated Use .invoke() instead. Will be removed in 0.2.0.
*/
abstract predict(
text: string,
options?: string[] | CallOptions,
callbacks?: Callbacks
): Promise<string>;
/**
* @deprecated Use .invoke() instead. Will be removed in 0.2.0.
*/
abstract predictMessages(
messages: BaseMessage[],
options?: string[] | CallOptions,
callbacks?: Callbacks
): Promise<BaseMessage>;
abstract _modelType(): string;
abstract _llmType(): string;
private _encoding?: Tiktoken;
async getNumTokens(content: MessageContent) {
// TODO: Figure out correct value.
if (typeof content !== "string") {
return 0;
}
// fallback to approximate calculation if tiktoken is not available
let numTokens = Math.ceil(content.length / 4);
if (!this._encoding) {
try {
this._encoding = await encodingForModel(
"modelName" in this
? getModelNameForTiktoken(this.modelName as string)
: "gpt2"
);
} catch (error) {
console.warn(
"Failed to calculate number of tokens, falling back to approximate count",
error
);
}
}
if (this._encoding) {
try {
numTokens = this._encoding.encode(content).length;
} catch (error) {
console.warn(
"Failed to calculate number of tokens, falling back to approximate count",
error
);
}
}
return numTokens;
}
protected static _convertInputToPromptValue(
input: BaseLanguageModelInput
): BasePromptValueInterface {
if (typeof input === "string") {
return new StringPromptValue(input);
} else if (Array.isArray(input)) {
return new ChatPromptValue(input.map(coerceMessageLikeToMessage));
} else {
return input;
}
}
/**
* Get the identifying parameters of the LLM.
*/
// eslint-disable-next-line @typescript-eslint/no-explicit-any
_identifyingParams(): Record<string, any> {
return {};
}
/**
* Create a unique cache key for a specific call to a specific language model.
* @param callOptions Call options for the model
* @returns A unique cache key.
*/
protected _getSerializedCacheKeyParametersForCall(
callOptions: CallOptions
): string {
// eslint-disable-next-line @typescript-eslint/no-explicit-any
const params: Record<string, any> = {
...this._identifyingParams(),
...callOptions,
_type: this._llmType(),
_model: this._modelType(),
};
const filteredEntries = Object.entries(params).filter(
([_, value]) => value !== undefined
);
const serializedEntries = filteredEntries
.map(([key, value]) => `${key}:${JSON.stringify(value)}`)
.sort()
.join(",");
return serializedEntries;
}
/**
* @deprecated
* Return a json-like object representing this LLM.
*/
serialize(): SerializedLLM {
return {
...this._identifyingParams(),
_type: this._llmType(),
_model: this._modelType(),
};
}
/**
* @deprecated
* Load an LLM from a json-like object describing it.
*/
static async deserialize(_data: SerializedLLM): Promise<BaseLanguageModel> {
throw new Error("Use .toJSON() instead");
}
}
/**
* Shared interface for token usage
* return type from LLM calls.
*/
export interface TokenUsage {
completionTokens?: number;
promptTokens?: number;
totalTokens?: number;
}