-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
agent.ts
691 lines (614 loc) Β· 19.3 KB
/
agent.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
import type {
StructuredToolInterface,
ToolInterface,
} from "@langchain/core/tools";
import type { BaseLanguageModelInterface } from "@langchain/core/language_models/base";
import { CallbackManager, Callbacks } from "@langchain/core/callbacks/manager";
import { BasePromptTemplate } from "@langchain/core/prompts";
import { AgentAction, AgentFinish, AgentStep } from "@langchain/core/agents";
import { BaseMessage } from "@langchain/core/messages";
import { ChainValues } from "@langchain/core/utils/types";
import { Serializable } from "@langchain/core/load/serializable";
import {
Runnable,
patchConfig,
type RunnableConfig,
RunnableSequence,
RunnableLike,
} from "@langchain/core/runnables";
import { LLMChain } from "../chains/llm_chain.js";
import type {
AgentActionOutputParser,
AgentInput,
RunnableMultiActionAgentInput,
RunnableSingleActionAgentInput,
SerializedAgent,
StoppingMethod,
} from "./types.js";
/**
* Record type for arguments passed to output parsers.
*/
// eslint-disable-next-line @typescript-eslint/no-explicit-any
export type OutputParserArgs = Record<string, any>;
/**
* Error class for parse errors in LangChain. Contains information about
* the error message and the output that caused the error.
*/
class ParseError extends Error {
output: string;
constructor(msg: string, output: string) {
super(msg);
this.output = output;
}
}
/**
* Abstract base class for agents in LangChain. Provides common
* functionality for agents, such as handling inputs and outputs.
*/
export abstract class BaseAgent extends Serializable {
declare ToolType: StructuredToolInterface;
abstract get inputKeys(): string[];
get returnValues(): string[] {
return ["output"];
}
get allowedTools(): string[] | undefined {
return undefined;
}
/**
* Return the string type key uniquely identifying this class of agent.
*/
_agentType(): string {
throw new Error("Not implemented");
}
/**
* Return the string type key uniquely identifying multi or single action agents.
*/
abstract _agentActionType(): string;
/**
* Return response when agent has been stopped due to max iterations
*/
returnStoppedResponse(
earlyStoppingMethod: StoppingMethod,
_steps: AgentStep[],
_inputs: ChainValues,
_callbackManager?: CallbackManager
): Promise<AgentFinish> {
if (earlyStoppingMethod === "force") {
return Promise.resolve({
returnValues: { output: "Agent stopped due to max iterations." },
log: "",
});
}
throw new Error(`Invalid stopping method: ${earlyStoppingMethod}`);
}
/**
* Prepare the agent for output, if needed
*/
async prepareForOutput(
_returnValues: AgentFinish["returnValues"],
_steps: AgentStep[]
): Promise<AgentFinish["returnValues"]> {
return {};
}
}
/**
* Abstract base class for single action agents in LangChain. Extends the
* BaseAgent class and provides additional functionality specific to
* single action agents.
*/
export abstract class BaseSingleActionAgent extends BaseAgent {
_agentActionType(): string {
return "single" as const;
}
/**
* Decide what to do, given some input.
*
* @param steps - Steps the LLM has taken so far, along with observations from each.
* @param inputs - User inputs.
* @param callbackManager - Callback manager.
*
* @returns Action specifying what tool to use.
*/
abstract plan(
steps: AgentStep[],
inputs: ChainValues,
callbackManager?: CallbackManager,
config?: RunnableConfig
): Promise<AgentAction | AgentFinish>;
}
/**
* Abstract base class for multi-action agents in LangChain. Extends the
* BaseAgent class and provides additional functionality specific to
* multi-action agents.
*/
export abstract class BaseMultiActionAgent extends BaseAgent {
_agentActionType(): string {
return "multi" as const;
}
/**
* Decide what to do, given some input.
*
* @param steps - Steps the LLM has taken so far, along with observations from each.
* @param inputs - User inputs.
* @param callbackManager - Callback manager.
*
* @returns Actions specifying what tools to use.
*/
abstract plan(
steps: AgentStep[],
inputs: ChainValues,
callbackManager?: CallbackManager,
config?: RunnableConfig
): Promise<AgentAction[] | AgentFinish>;
}
function isAgentAction(input: unknown): input is AgentAction {
return !Array.isArray(input) && (input as AgentAction)?.tool !== undefined;
}
export function isRunnableAgent(x: BaseAgent) {
return (
(x as RunnableMultiActionAgent | RunnableSingleActionAgent).runnable !==
undefined
);
}
// TODO: Remove in the future. Only for backwards compatibility.
// Allows for the creation of runnables with properties that will
// be passed to the agent executor constructor.
export class AgentRunnableSequence<
// eslint-disable-next-line @typescript-eslint/no-explicit-any
RunInput = any,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
RunOutput = any
> extends RunnableSequence<RunInput, RunOutput> {
streamRunnable?: boolean;
singleAction: boolean;
// eslint-disable-next-line @typescript-eslint/no-explicit-any
static fromRunnables<RunInput = any, RunOutput = any>(
[first, ...runnables]: [
RunnableLike<RunInput>,
...RunnableLike[],
// eslint-disable-next-line @typescript-eslint/no-explicit-any
RunnableLike<any, RunOutput>
],
config: { singleAction: boolean; streamRunnable?: boolean; name?: string }
): AgentRunnableSequence<RunInput, Exclude<RunOutput, Error>> {
const sequence = RunnableSequence.from(
[first, ...runnables],
config.name
) as AgentRunnableSequence<RunInput, Exclude<RunOutput, Error>>;
sequence.singleAction = config.singleAction;
sequence.streamRunnable = config.streamRunnable;
return sequence;
}
static isAgentRunnableSequence(x: Runnable): x is AgentRunnableSequence {
return typeof (x as AgentRunnableSequence).singleAction === "boolean";
}
}
/**
* Class representing a single-action agent powered by runnables.
* Extends the BaseSingleActionAgent class and provides methods for
* planning agent actions with runnables.
*/
export class RunnableSingleActionAgent extends BaseSingleActionAgent {
lc_namespace = ["langchain", "agents", "runnable"];
runnable: Runnable<
ChainValues & { steps: AgentStep[] },
AgentAction | AgentFinish
>;
get inputKeys(): string[] {
return [];
}
/**
* Whether to stream from the runnable or not.
* If true, the underlying LLM is invoked in a streaming fashion to make it
* possible to get access to the individual LLM tokens when using
* `streamLog` with the Agent Executor. If false then LLM is invoked in a
* non-streaming fashion and individual LLM tokens will not be available
* in `streamLog`.
*
* Note that the runnable should still only stream a single action or
* finish chunk.
*/
streamRunnable = true;
defaultRunName = "RunnableAgent";
constructor(fields: RunnableSingleActionAgentInput) {
super(fields);
this.runnable = fields.runnable;
this.defaultRunName =
fields.defaultRunName ?? this.runnable.name ?? this.defaultRunName;
this.streamRunnable = fields.streamRunnable ?? this.streamRunnable;
}
async plan(
steps: AgentStep[],
inputs: ChainValues,
callbackManager?: CallbackManager,
config?: RunnableConfig
): Promise<AgentAction | AgentFinish> {
const combinedInput = { ...inputs, steps };
const combinedConfig = patchConfig(config, {
callbacks: callbackManager,
runName: this.defaultRunName,
});
if (this.streamRunnable) {
const stream = await this.runnable.stream(combinedInput, combinedConfig);
let finalOutput: AgentAction | AgentFinish | undefined;
for await (const chunk of stream) {
if (finalOutput === undefined) {
finalOutput = chunk;
} else {
throw new Error(
[
`Multiple agent actions/finishes received in streamed agent output.`,
`Set "streamRunnable: false" when initializing the agent to invoke this agent in non-streaming mode.`,
].join("\n")
);
}
}
if (finalOutput === undefined) {
throw new Error(
[
"No streaming output received from underlying runnable.",
`Set "streamRunnable: false" when initializing the agent to invoke this agent in non-streaming mode.`,
].join("\n")
);
}
return finalOutput;
} else {
return this.runnable.invoke(combinedInput, combinedConfig);
}
}
}
/**
* Class representing a multi-action agent powered by runnables.
* Extends the BaseMultiActionAgent class and provides methods for
* planning agent actions with runnables.
*/
export class RunnableMultiActionAgent extends BaseMultiActionAgent {
lc_namespace = ["langchain", "agents", "runnable"];
// TODO: Rename input to "intermediate_steps"
runnable: Runnable<
ChainValues & { steps: AgentStep[] },
AgentAction[] | AgentAction | AgentFinish
>;
defaultRunName = "RunnableAgent";
stop?: string[];
streamRunnable = true;
get inputKeys(): string[] {
return [];
}
constructor(fields: RunnableMultiActionAgentInput) {
super(fields);
this.runnable = fields.runnable;
this.stop = fields.stop;
this.defaultRunName =
fields.defaultRunName ?? this.runnable.name ?? this.defaultRunName;
this.streamRunnable = fields.streamRunnable ?? this.streamRunnable;
}
async plan(
steps: AgentStep[],
inputs: ChainValues,
callbackManager?: CallbackManager,
config?: RunnableConfig
): Promise<AgentAction[] | AgentFinish> {
const combinedInput = { ...inputs, steps };
const combinedConfig = patchConfig(config, {
callbacks: callbackManager,
runName: this.defaultRunName,
});
let output;
if (this.streamRunnable) {
const stream = await this.runnable.stream(combinedInput, combinedConfig);
let finalOutput: AgentAction | AgentFinish | AgentAction[] | undefined;
for await (const chunk of stream) {
if (finalOutput === undefined) {
finalOutput = chunk;
} else {
throw new Error(
[
`Multiple agent actions/finishes received in streamed agent output.`,
`Set "streamRunnable: false" when initializing the agent to invoke this agent in non-streaming mode.`,
].join("\n")
);
}
}
if (finalOutput === undefined) {
throw new Error(
[
"No streaming output received from underlying runnable.",
`Set "streamRunnable: false" when initializing the agent to invoke this agent in non-streaming mode.`,
].join("\n")
);
}
output = finalOutput;
} else {
output = await this.runnable.invoke(combinedInput, combinedConfig);
}
if (isAgentAction(output)) {
return [output];
}
return output;
}
}
/** @deprecated Renamed to RunnableMultiActionAgent. */
export class RunnableAgent extends RunnableMultiActionAgent {}
/**
* Interface for input data for creating a LLMSingleActionAgent.
*/
export interface LLMSingleActionAgentInput {
llmChain: LLMChain;
outputParser: AgentActionOutputParser;
stop?: string[];
}
/**
* Class representing a single action agent using a LLMChain in LangChain.
* Extends the BaseSingleActionAgent class and provides methods for
* planning agent actions based on LLMChain outputs.
* @example
* ```typescript
* const customPromptTemplate = new CustomPromptTemplate({
* tools: [new Calculator()],
* inputVariables: ["input", "agent_scratchpad"],
* });
* const customOutputParser = new CustomOutputParser();
* const agent = new LLMSingleActionAgent({
* llmChain: new LLMChain({
* prompt: customPromptTemplate,
* llm: new ChatOpenAI({ temperature: 0 }),
* }),
* outputParser: customOutputParser,
* stop: ["\nObservation"],
* });
* const executor = new AgentExecutor({
* agent,
* tools: [new Calculator()],
* });
* const result = await executor.invoke({
* input:
* "Who is Olivia Wilde's boyfriend? What is his current age raised to the 0.23 power?",
* });
* ```
*/
export class LLMSingleActionAgent extends BaseSingleActionAgent {
lc_namespace = ["langchain", "agents"];
llmChain: LLMChain;
outputParser: AgentActionOutputParser;
stop?: string[];
constructor(input: LLMSingleActionAgentInput) {
super(input);
this.stop = input.stop;
this.llmChain = input.llmChain;
this.outputParser = input.outputParser;
}
get inputKeys(): string[] {
return this.llmChain.inputKeys;
}
/**
* Decide what to do given some input.
*
* @param steps - Steps the LLM has taken so far, along with observations from each.
* @param inputs - User inputs.
* @param callbackManager - Callback manager.
*
* @returns Action specifying what tool to use.
*/
async plan(
steps: AgentStep[],
inputs: ChainValues,
callbackManager?: CallbackManager
): Promise<AgentAction | AgentFinish> {
const output = await this.llmChain.call(
{
intermediate_steps: steps,
stop: this.stop,
...inputs,
},
callbackManager
);
return this.outputParser.parse(
output[this.llmChain.outputKey],
callbackManager
);
}
}
/**
* Interface for arguments used to create an agent in LangChain.
*/
export interface AgentArgs {
outputParser?: AgentActionOutputParser;
callbacks?: Callbacks;
/**
* @deprecated Use `callbacks` instead.
*/
callbackManager?: CallbackManager;
}
/**
* Class responsible for calling a language model and deciding an action.
*
* @remarks This is driven by an LLMChain. The prompt in the LLMChain *must*
* include a variable called "agent_scratchpad" where the agent can put its
* intermediary work.
*
* @deprecated Use {@link https://js.langchain.com/docs/modules/agents/agent_types/ | new agent creation methods}.
*/
export abstract class Agent extends BaseSingleActionAgent {
llmChain: LLMChain;
outputParser: AgentActionOutputParser | undefined;
private _allowedTools?: string[] = undefined;
get allowedTools(): string[] | undefined {
return this._allowedTools;
}
get inputKeys(): string[] {
return this.llmChain.inputKeys.filter((k) => k !== "agent_scratchpad");
}
constructor(input: AgentInput) {
super(input);
this.llmChain = input.llmChain;
this._allowedTools = input.allowedTools;
this.outputParser = input.outputParser;
}
/**
* Prefix to append the observation with.
*/
abstract observationPrefix(): string;
/**
* Prefix to append the LLM call with.
*/
abstract llmPrefix(): string;
/**
* Return the string type key uniquely identifying this class of agent.
*/
abstract _agentType(): string;
/**
* Get the default output parser for this agent.
*/
static getDefaultOutputParser(
_fields?: OutputParserArgs
): AgentActionOutputParser {
throw new Error("Not implemented");
}
/**
* Create a prompt for this class
*
* @param _tools - List of tools the agent will have access to, used to format the prompt.
* @param _fields - Additional fields used to format the prompt.
*
* @returns A PromptTemplate assembled from the given tools and fields.
* */
static createPrompt(
_tools: StructuredToolInterface[],
// eslint-disable-next-line @typescript-eslint/no-explicit-any
_fields?: Record<string, any>
): BasePromptTemplate {
throw new Error("Not implemented");
}
/** Construct an agent from an LLM and a list of tools */
static fromLLMAndTools(
_llm: BaseLanguageModelInterface,
_tools: StructuredToolInterface[],
// eslint-disable-next-line @typescript-eslint/no-explicit-any
_args?: AgentArgs
): Agent {
throw new Error("Not implemented");
}
/**
* Validate that appropriate tools are passed in
*/
static validateTools(_tools: StructuredToolInterface[]): void {}
_stop(): string[] {
return [`\n${this.observationPrefix()}`];
}
/**
* Name of tool to use to terminate the chain.
*/
finishToolName(): string {
return "Final Answer";
}
/**
* Construct a scratchpad to let the agent continue its thought process
*/
async constructScratchPad(
steps: AgentStep[]
): Promise<string | BaseMessage[]> {
return steps.reduce(
(thoughts, { action, observation }) =>
thoughts +
[
action.log,
`${this.observationPrefix()}${observation}`,
this.llmPrefix(),
].join("\n"),
""
);
}
private async _plan(
steps: AgentStep[],
inputs: ChainValues,
suffix?: string,
callbackManager?: CallbackManager
): Promise<AgentAction | AgentFinish> {
const thoughts = await this.constructScratchPad(steps);
const newInputs: ChainValues = {
...inputs,
agent_scratchpad: suffix ? `${thoughts}${suffix}` : thoughts,
};
if (this._stop().length !== 0) {
newInputs.stop = this._stop();
}
const output = await this.llmChain.predict(newInputs, callbackManager);
if (!this.outputParser) {
throw new Error("Output parser not set");
}
return this.outputParser.parse(output, callbackManager);
}
/**
* Decide what to do given some input.
*
* @param steps - Steps the LLM has taken so far, along with observations from each.
* @param inputs - User inputs.
* @param callbackManager - Callback manager to use for this call.
*
* @returns Action specifying what tool to use.
*/
plan(
steps: AgentStep[],
inputs: ChainValues,
callbackManager?: CallbackManager
): Promise<AgentAction | AgentFinish> {
return this._plan(steps, inputs, undefined, callbackManager);
}
/**
* Return response when agent has been stopped due to max iterations
*/
async returnStoppedResponse(
earlyStoppingMethod: StoppingMethod,
steps: AgentStep[],
inputs: ChainValues,
callbackManager?: CallbackManager
): Promise<AgentFinish> {
if (earlyStoppingMethod === "force") {
return {
returnValues: { output: "Agent stopped due to max iterations." },
log: "",
};
}
if (earlyStoppingMethod === "generate") {
try {
const action = await this._plan(
steps,
inputs,
"\n\nI now need to return a final answer based on the previous steps:",
callbackManager
);
if ("returnValues" in action) {
return action;
}
return { returnValues: { output: action.log }, log: action.log };
} catch (err) {
// fine to use instanceof because we're in the same module
// eslint-disable-next-line no-instanceof/no-instanceof
if (!(err instanceof ParseError)) {
throw err;
}
return { returnValues: { output: err.output }, log: err.output };
}
}
throw new Error(`Invalid stopping method: ${earlyStoppingMethod}`);
}
/**
* Load an agent from a json-like object describing it.
*/
static async deserialize(
data: SerializedAgent & {
llm?: BaseLanguageModelInterface;
tools?: ToolInterface[];
}
): Promise<Agent> {
switch (data._type) {
case "zero-shot-react-description": {
const { ZeroShotAgent } = await import("./mrkl/index.js");
return ZeroShotAgent.deserialize(data);
}
default:
throw new Error("Unknown agent type");
}
}
}