-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
azure_cosmosdb.ts
409 lines (371 loc) Β· 13.8 KB
/
azure_cosmosdb.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import {
ObjectId,
Collection,
Document as MongoDBDocument,
MongoClient,
Db,
} from "mongodb";
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
import {
MaxMarginalRelevanceSearchOptions,
VectorStore,
} from "@langchain/core/vectorstores";
import { Document } from "@langchain/core/documents";
import { maximalMarginalRelevance } from "@langchain/core/utils/math";
import { getEnvironmentVariable } from "@langchain/core/utils/env";
/** Cosmos DB Similarity type. */
export const AzureCosmosDBSimilarityType = {
/** CosineSimilarity */
COS: "COS",
/** Inner - product */
IP: "IP",
/** Euclidian distance */
L2: "L2",
} as const;
/** Cosmos DB Similarity type. */
export type AzureCosmosDBSimilarityType =
(typeof AzureCosmosDBSimilarityType)[keyof typeof AzureCosmosDBSimilarityType];
/**
* Configuration options for the `AzureCosmosDBVectorStore` constructor.
*/
export interface AzureCosmosDBConfig {
readonly client?: MongoClient;
readonly connectionString?: string;
readonly databaseName?: string;
readonly collectionName?: string;
readonly indexName?: string;
readonly textKey?: string;
readonly embeddingKey?: string;
}
/**
* Azure Cosmos DB for MongoDB vCore vector store.
* To use this, you should have both:
* - the `mongodb` NPM package installed
* - a connection string associated with a MongoDB VCore Cluster
*
* You do not need to create a database or collection, it will be created
* automatically.
*
* Though you do need to create an index on the collection, which can be done
* using the `createIndex` method.
*/
export class AzureCosmosDBVectorStore extends VectorStore {
get lc_secrets(): { [key: string]: string } {
return {
endpoint: "AZURE_COSMOSDB_CONNECTION_STRING",
};
}
private readonly initPromise: Promise<void>;
private readonly client: MongoClient | undefined;
private database: Db;
private collection: Collection<MongoDBDocument>;
readonly indexName: string;
readonly textKey: string;
readonly embeddingKey: string;
_vectorstoreType(): string {
return "azure_cosmosdb";
}
constructor(embeddings: EmbeddingsInterface, dbConfig: AzureCosmosDBConfig) {
super(embeddings, dbConfig);
const connectionString =
dbConfig.connectionString ??
getEnvironmentVariable("AZURE_COSMOSDB_CONNECTION_STRING");
if (!dbConfig.client && !connectionString) {
throw new Error(
"Azure Cosmos DB client or connection string must be set."
);
}
if (!dbConfig.client) {
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
this.client = new MongoClient(connectionString!, {
appName: "langchainjs",
});
}
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const client = dbConfig.client || this.client!;
const databaseName = dbConfig.databaseName ?? "documentsDB";
const collectionName = dbConfig.collectionName ?? "documents";
this.indexName = dbConfig.indexName ?? "vectorSearchIndex";
this.textKey = dbConfig.textKey ?? "textContent";
this.embeddingKey = dbConfig.embeddingKey ?? "vectorContent";
// Start initialization, but don't wait for it to finish here
this.initPromise = this.init(client, databaseName, collectionName).catch(
(error) => {
console.error("Error during Azure Cosmos DB initialization:", error);
}
);
}
/**
* Checks if the specified index name during instance construction exists
* on the collection.
* @returns A promise that resolves to a boolean indicating if the index exists.
*/
async checkIndexExists(): Promise<boolean> {
await this.initPromise;
const indexes = await this.collection.listIndexes().toArray();
return indexes.some((index) => index.name === this.indexName);
}
/**
* Deletes the index specified during instance construction if it exists.
* @returns A promise that resolves when the index has been deleted.
*/
async deleteIndex(): Promise<void> {
await this.initPromise;
if (await this.checkIndexExists()) {
await this.collection.dropIndex(this.indexName);
}
}
/**
* Creates an index on the collection with the specified index name during
* instance construction.
*
* Setting the numLists parameter correctly is important for achieving good
* accuracy and performance.
* Since the vector store uses IVF as the indexing strategy, you should
* create the index only after you have loaded a large enough sample
* documents to ensure that the centroids for the respective buckets are
* faily distributed.
*
* We recommend that numLists is set to documentCount/1000 for up to
* 1 million documents and to sqrt(documentCount) for more than 1 million
* documents.
* As the number of items in your database grows, you should tune numLists
* to be larger in order to achieve good latency performance for vector
* search.
*
* If you're experimenting with a new scenario or creating a small demo,
* you can start with numLists set to 1 to perform a brute-force search
* across all vectors.
* This should provide you with the most accurate results from the vector
* search, however be aware that the search speed and latency will be slow.
* After your initial setup, you should go ahead and tune the numLists
* parameter using the above guidance.
* @param numLists This integer is the number of clusters that the inverted
* file (IVF) index uses to group the vector data.
* We recommend that numLists is set to documentCount/1000 for up to
* 1 million documents and to sqrt(documentCount) for more than 1 million
* documents.
* Using a numLists value of 1 is akin to performing brute-force search,
* which has limited performance
* @param dimensions Number of dimensions for vector similarity.
* The maximum number of supported dimensions is 2000
* @param similarity Similarity metric to use with the IVF index.
* Possible options are:
* - CosmosDBSimilarityType.COS (cosine distance)
* - CosmosDBSimilarityType.L2 (Euclidean distance)
* - CosmosDBSimilarityType.IP (inner product)
* @returns A promise that resolves when the index has been created.
*/
async createIndex(
numLists = 100,
dimensions = 1536,
similarity: AzureCosmosDBSimilarityType = AzureCosmosDBSimilarityType.COS
): Promise<void> {
await this.initPromise;
const createIndexCommands = {
createIndexes: this.collection.collectionName,
indexes: [
{
name: this.indexName,
key: { [this.embeddingKey]: "cosmosSearch" },
cosmosSearchOptions: {
kind: "vector-ivf",
numLists,
similarity,
dimensions,
},
},
],
};
await this.database.command(createIndexCommands);
}
/**
* Removes specified documents from the AzureCosmosDBVectorStore.
* @param ids IDs of the documents to be removed. If no IDs are specified,
* all documents will be removed.
* @returns A promise that resolves when the documents have been removed.
*/
async delete(ids?: string[]): Promise<void> {
await this.initPromise;
if (ids) {
const objectIds = ids.map((id) => new ObjectId(id));
await this.collection.deleteMany({ _id: { $in: objectIds } });
} else {
await this.collection.deleteMany({});
}
}
/**
* Closes any newly instanciated Azure Cosmos DB client.
* If the client was passed in the constructor, it will not be closed.
* @returns A promise that resolves when any newly instanciated Azure
* Cosmos DB client been closed.
*/
async close(): Promise<void> {
if (this.client) {
await this.client.close();
}
}
/**
* Method for adding vectors to the AzureCosmosDBVectorStore.
* @param vectors Vectors to be added.
* @param documents Corresponding documents to be added.
* @returns A promise that resolves when the vectors and documents have been added.
*/
async addVectors(vectors: number[][], documents: Document[]): Promise<void> {
const docs = vectors.map((embedding, idx) => ({
[this.textKey]: documents[idx].pageContent,
[this.embeddingKey]: embedding,
...documents[idx].metadata,
}));
await this.initPromise;
await this.collection.insertMany(docs);
}
/**
* Method for adding documents to the AzureCosmosDBVectorStore. It first converts
* the documents to texts and then adds them as vectors.
* @param documents The documents to add.
* @returns A promise that resolves when the documents have been added.
*/
async addDocuments(documents: Document[]): Promise<void> {
const texts = documents.map(({ pageContent }) => pageContent);
await this.addVectors(
await this.embeddings.embedDocuments(texts),
documents
);
}
/**
* Method that performs a similarity search on the vectors stored in the
* collection. It returns a list of documents and their corresponding
* similarity scores.
* @param queryVector Query vector for the similarity search.
* @param k=4 Number of nearest neighbors to return.
* @returns Promise that resolves to a list of documents and their corresponding similarity scores.
*/
async similaritySearchVectorWithScore(
queryVector: number[],
k = 4
): Promise<[Document, number][]> {
await this.initPromise;
const pipeline = [
{
$search: {
cosmosSearch: {
vector: queryVector,
path: this.embeddingKey,
k,
},
returnStoredSource: true,
},
},
{
$project: {
similarityScore: { $meta: "searchScore" },
document: "$$ROOT",
},
},
];
const results = await this.collection
.aggregate(pipeline)
.map<[Document, number]>((result) => {
const { similarityScore: score, document } = result;
const text = document[this.textKey];
return [new Document({ pageContent: text, metadata: document }), score];
});
return results.toArray();
}
/**
* Return documents selected using the maximal marginal relevance.
* Maximal marginal relevance optimizes for similarity to the query AND
* diversity among selected documents.
* @param query Text to look up documents similar to.
* @param options.k Number of documents to return.
* @param options.fetchK=20 Number of documents to fetch before passing to
* the MMR algorithm.
* @param options.lambda=0.5 Number between 0 and 1 that determines the
* degree of diversity among the results, where 0 corresponds to maximum
* diversity and 1 to minimum diversity.
* @returns List of documents selected by maximal marginal relevance.
*/
async maxMarginalRelevanceSearch(
query: string,
options: MaxMarginalRelevanceSearchOptions<this["FilterType"]>
): Promise<Document[]> {
const { k, fetchK = 20, lambda = 0.5 } = options;
const queryEmbedding = await this.embeddings.embedQuery(query);
const docs = await this.similaritySearchVectorWithScore(
queryEmbedding,
fetchK
);
const embeddingList = docs.map((doc) => doc[0].metadata[this.embeddingKey]);
// Re-rank the results using MMR
const mmrIndexes = maximalMarginalRelevance(
queryEmbedding,
embeddingList,
lambda,
k
);
const mmrDocs = mmrIndexes.map((index) => docs[index][0]);
return mmrDocs;
}
/**
* Initializes the AzureCosmosDBVectorStore by connecting to the database.
* @param client The MongoClient to use for connecting to the database.
* @param databaseName The name of the database to use.
* @param collectionName The name of the collection to use.
* @returns A promise that resolves when the AzureCosmosDBVectorStore has been initialized.
*/
private async init(
client: MongoClient,
databaseName: string,
collectionName: string
): Promise<void> {
await client.connect();
this.database = client.db(databaseName);
this.collection = this.database.collection(collectionName);
}
/**
* Static method to create an instance of AzureCosmosDBVectorStore from a
* list of texts. It first converts the texts to vectors and then adds
* them to the collection.
* @param texts List of texts to be converted to vectors.
* @param metadatas Metadata for the texts.
* @param embeddings Embeddings to be used for conversion.
* @param dbConfig Database configuration for Azure Cosmos DB for MongoDB vCore.
* @returns Promise that resolves to a new instance of AzureCosmosDBVectorStore.
*/
static async fromTexts(
texts: string[],
metadatas: object[] | object,
embeddings: EmbeddingsInterface,
dbConfig: AzureCosmosDBConfig
): Promise<AzureCosmosDBVectorStore> {
const docs: Document[] = [];
for (let i = 0; i < texts.length; i += 1) {
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
const newDoc = new Document({
pageContent: texts[i],
metadata,
});
docs.push(newDoc);
}
return AzureCosmosDBVectorStore.fromDocuments(docs, embeddings, dbConfig);
}
/**
* Static method to create an instance of AzureCosmosDBVectorStore from a
* list of documents. It first converts the documents to vectors and then
* adds them to the collection.
* @param docs List of documents to be converted to vectors.
* @param embeddings Embeddings to be used for conversion.
* @param dbConfig Database configuration for Azure Cosmos DB for MongoDB vCore.
* @returns Promise that resolves to a new instance of AzureCosmosDBVectorStore.
*/
static async fromDocuments(
docs: Document[],
embeddings: EmbeddingsInterface,
dbConfig: AzureCosmosDBConfig
): Promise<AzureCosmosDBVectorStore> {
const instance = new this(embeddings, dbConfig);
await instance.addDocuments(docs);
return instance;
}
}