-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
vectorstores.ts
393 lines (347 loc) Β· 11.3 KB
/
vectorstores.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import type { EmbeddingsInterface } from "./embeddings.js";
import type { DocumentInterface } from "./documents/document.js";
import {
BaseRetriever,
BaseRetrieverInterface,
type BaseRetrieverInput,
} from "./retrievers.js";
import { Serializable } from "./load/serializable.js";
import {
CallbackManagerForRetrieverRun,
Callbacks,
} from "./callbacks/manager.js";
/**
* Type for options when adding a document to the VectorStore.
*/
// eslint-disable-next-line @typescript-eslint/no-explicit-any
type AddDocumentOptions = Record<string, any>;
/**
* Type for options when performing a maximal marginal relevance search.
*/
export type MaxMarginalRelevanceSearchOptions<FilterType> = {
k: number;
fetchK?: number;
lambda?: number;
filter?: FilterType;
};
/**
* Type for options when performing a maximal marginal relevance search
* with the VectorStoreRetriever.
*/
export type VectorStoreRetrieverMMRSearchKwargs = {
fetchK?: number;
lambda?: number;
};
/**
* Type for input when creating a VectorStoreRetriever instance.
*/
export type VectorStoreRetrieverInput<V extends VectorStoreInterface> =
BaseRetrieverInput &
(
| {
vectorStore: V;
k?: number;
filter?: V["FilterType"];
searchType?: "similarity";
}
| {
vectorStore: V;
k?: number;
filter?: V["FilterType"];
searchType: "mmr";
searchKwargs?: VectorStoreRetrieverMMRSearchKwargs;
}
);
export interface VectorStoreRetrieverInterface<
V extends VectorStoreInterface = VectorStoreInterface
> extends BaseRetrieverInterface {
vectorStore: V;
addDocuments(
documents: DocumentInterface[],
options?: AddDocumentOptions
): Promise<string[] | void>;
}
/**
* Class for performing document retrieval from a VectorStore. Can perform
* similarity search or maximal marginal relevance search.
*/
export class VectorStoreRetriever<
V extends VectorStoreInterface = VectorStoreInterface
>
extends BaseRetriever
implements VectorStoreRetrieverInterface
{
static lc_name() {
return "VectorStoreRetriever";
}
get lc_namespace() {
return ["langchain_core", "vectorstores"];
}
vectorStore: V;
k = 4;
searchType = "similarity";
searchKwargs?: VectorStoreRetrieverMMRSearchKwargs;
filter?: V["FilterType"];
_vectorstoreType(): string {
return this.vectorStore._vectorstoreType();
}
constructor(fields: VectorStoreRetrieverInput<V>) {
super(fields);
this.vectorStore = fields.vectorStore;
this.k = fields.k ?? this.k;
this.searchType = fields.searchType ?? this.searchType;
this.filter = fields.filter;
if (fields.searchType === "mmr") {
this.searchKwargs = fields.searchKwargs;
}
}
async _getRelevantDocuments(
query: string,
runManager?: CallbackManagerForRetrieverRun
): Promise<DocumentInterface[]> {
if (this.searchType === "mmr") {
if (typeof this.vectorStore.maxMarginalRelevanceSearch !== "function") {
throw new Error(
`The vector store backing this retriever, ${this._vectorstoreType()} does not support max marginal relevance search.`
);
}
return this.vectorStore.maxMarginalRelevanceSearch(
query,
{
k: this.k,
filter: this.filter,
...this.searchKwargs,
},
runManager?.getChild("vectorstore")
);
}
return this.vectorStore.similaritySearch(
query,
this.k,
this.filter,
runManager?.getChild("vectorstore")
);
}
async addDocuments(
documents: DocumentInterface[],
options?: AddDocumentOptions
): Promise<string[] | void> {
return this.vectorStore.addDocuments(documents, options);
}
}
export interface VectorStoreInterface extends Serializable {
FilterType: object | string;
embeddings: EmbeddingsInterface;
_vectorstoreType(): string;
addVectors(
vectors: number[][],
documents: DocumentInterface[],
options?: AddDocumentOptions
): Promise<string[] | void>;
addDocuments(
documents: DocumentInterface[],
options?: AddDocumentOptions
): Promise<string[] | void>;
// eslint-disable-next-line @typescript-eslint/no-explicit-any
delete(_params?: Record<string, any>): Promise<void>;
similaritySearchVectorWithScore(
query: number[],
k: number,
filter?: this["FilterType"]
): Promise<[DocumentInterface, number][]>;
similaritySearch(
query: string,
k?: number,
filter?: this["FilterType"],
callbacks?: Callbacks
): Promise<DocumentInterface[]>;
similaritySearchWithScore(
query: string,
k?: number,
filter?: this["FilterType"],
callbacks?: Callbacks
): Promise<[DocumentInterface, number][]>;
/**
* Return documents selected using the maximal marginal relevance.
* Maximal marginal relevance optimizes for similarity to the query AND diversity
* among selected documents.
*
* @param {string} query - Text to look up documents similar to.
* @param {number} options.k - Number of documents to return.
* @param {number} options.fetchK - Number of documents to fetch before passing to the MMR algorithm.
* @param {number} options.lambda - Number between 0 and 1 that determines the degree of diversity among the results,
* where 0 corresponds to maximum diversity and 1 to minimum diversity.
* @param {this["FilterType"]} options.filter - Optional filter
* @param _callbacks
*
* @returns {Promise<DocumentInterface[]>} - List of documents selected by maximal marginal relevance.
*/
maxMarginalRelevanceSearch?(
query: string,
options: MaxMarginalRelevanceSearchOptions<this["FilterType"]>,
callbacks: Callbacks | undefined
): Promise<DocumentInterface[]>;
asRetriever(
kOrFields?: number | Partial<VectorStoreRetrieverInput<this>>,
filter?: this["FilterType"],
callbacks?: Callbacks,
tags?: string[],
metadata?: Record<string, unknown>,
verbose?: boolean
): VectorStoreRetriever<this>;
}
/**
* Abstract class representing a store of vectors. Provides methods for
* adding vectors and documents, deleting from the store, and searching
* the store.
*/
export abstract class VectorStore
extends Serializable
implements VectorStoreInterface
{
declare FilterType: object | string;
// Only ever instantiated in main LangChain
lc_namespace = ["langchain", "vectorstores", this._vectorstoreType()];
embeddings: EmbeddingsInterface;
// eslint-disable-next-line @typescript-eslint/no-explicit-any
constructor(embeddings: EmbeddingsInterface, dbConfig: Record<string, any>) {
super(dbConfig);
this.embeddings = embeddings;
}
abstract _vectorstoreType(): string;
abstract addVectors(
vectors: number[][],
documents: DocumentInterface[],
options?: AddDocumentOptions
): Promise<string[] | void>;
abstract addDocuments(
documents: DocumentInterface[],
options?: AddDocumentOptions
): Promise<string[] | void>;
// eslint-disable-next-line @typescript-eslint/no-explicit-any
async delete(_params?: Record<string, any>): Promise<void> {
throw new Error("Not implemented.");
}
abstract similaritySearchVectorWithScore(
query: number[],
k: number,
filter?: this["FilterType"]
): Promise<[DocumentInterface, number][]>;
async similaritySearch(
query: string,
k = 4,
filter: this["FilterType"] | undefined = undefined,
_callbacks: Callbacks | undefined = undefined // implement passing to embedQuery later
): Promise<DocumentInterface[]> {
const results = await this.similaritySearchVectorWithScore(
await this.embeddings.embedQuery(query),
k,
filter
);
return results.map((result) => result[0]);
}
async similaritySearchWithScore(
query: string,
k = 4,
filter: this["FilterType"] | undefined = undefined,
_callbacks: Callbacks | undefined = undefined // implement passing to embedQuery later
): Promise<[DocumentInterface, number][]> {
return this.similaritySearchVectorWithScore(
await this.embeddings.embedQuery(query),
k,
filter
);
}
/**
* Return documents selected using the maximal marginal relevance.
* Maximal marginal relevance optimizes for similarity to the query AND diversity
* among selected documents.
*
* @param {string} query - Text to look up documents similar to.
* @param {number} options.k - Number of documents to return.
* @param {number} options.fetchK - Number of documents to fetch before passing to the MMR algorithm.
* @param {number} options.lambda - Number between 0 and 1 that determines the degree of diversity among the results,
* where 0 corresponds to maximum diversity and 1 to minimum diversity.
* @param {this["FilterType"]} options.filter - Optional filter
* @param _callbacks
*
* @returns {Promise<DocumentInterface[]>} - List of documents selected by maximal marginal relevance.
*/
async maxMarginalRelevanceSearch?(
query: string,
options: MaxMarginalRelevanceSearchOptions<this["FilterType"]>,
_callbacks: Callbacks | undefined // implement passing to embedQuery later
): Promise<DocumentInterface[]>;
static fromTexts(
_texts: string[],
_metadatas: object[] | object,
_embeddings: EmbeddingsInterface,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
_dbConfig: Record<string, any>
): Promise<VectorStore> {
throw new Error(
"the Langchain vectorstore implementation you are using forgot to override this, please report a bug"
);
}
static fromDocuments(
_docs: DocumentInterface[],
_embeddings: EmbeddingsInterface,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
_dbConfig: Record<string, any>
): Promise<VectorStore> {
throw new Error(
"the Langchain vectorstore implementation you are using forgot to override this, please report a bug"
);
}
asRetriever(
kOrFields?: number | Partial<VectorStoreRetrieverInput<this>>,
filter?: this["FilterType"],
callbacks?: Callbacks,
tags?: string[],
metadata?: Record<string, unknown>,
verbose?: boolean
): VectorStoreRetriever<this> {
if (typeof kOrFields === "number") {
return new VectorStoreRetriever({
vectorStore: this,
k: kOrFields,
filter,
tags: [...(tags ?? []), this._vectorstoreType()],
metadata,
verbose,
callbacks,
});
} else {
const params = {
vectorStore: this,
k: kOrFields?.k,
filter: kOrFields?.filter,
tags: [...(kOrFields?.tags ?? []), this._vectorstoreType()],
metadata: kOrFields?.metadata,
verbose: kOrFields?.verbose,
callbacks: kOrFields?.callbacks,
searchType: kOrFields?.searchType,
};
if (kOrFields?.searchType === "mmr") {
return new VectorStoreRetriever({
...params,
searchKwargs: kOrFields.searchKwargs,
});
}
return new VectorStoreRetriever({ ...params });
}
}
}
/**
* Abstract class extending VectorStore with functionality for saving and
* loading the vector store.
*/
export abstract class SaveableVectorStore extends VectorStore {
abstract save(directory: string): Promise<void>;
static load(
_directory: string,
_embeddings: EmbeddingsInterface
): Promise<SaveableVectorStore> {
throw new Error("Not implemented");
}
}