-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
tigris.ts
177 lines (161 loc) Β· 6.09 KB
/
tigris.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import * as uuid from "uuid";
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
import { VectorStore } from "@langchain/core/vectorstores";
import { Document } from "@langchain/core/documents";
/**
* Type definition for the arguments required to initialize a
* TigrisVectorStore instance.
*/
export type TigrisLibArgs = {
// eslint-disable-next-line @typescript-eslint/no-explicit-any
index: any;
};
/**
* Class for managing and operating vector search applications with
* Tigris, an open-source Serverless NoSQL Database and Search Platform.
*/
export class TigrisVectorStore extends VectorStore {
// eslint-disable-next-line @typescript-eslint/no-explicit-any
index?: any;
_vectorstoreType(): string {
return "tigris";
}
constructor(embeddings: EmbeddingsInterface, args: TigrisLibArgs) {
super(embeddings, args);
this.embeddings = embeddings;
this.index = args.index;
}
/**
* Method to add an array of documents to the Tigris database.
* @param documents An array of Document instances to be added to the Tigris database.
* @param options Optional parameter that can either be an array of string IDs or an object with a property 'ids' that is an array of string IDs.
* @returns A Promise that resolves when the documents have been added to the Tigris database.
*/
async addDocuments(
documents: Document[],
options?: { ids?: string[] } | string[]
): Promise<void> {
const texts = documents.map(({ pageContent }) => pageContent);
await this.addVectors(
await this.embeddings.embedDocuments(texts),
documents,
options
);
}
/**
* Method to add vectors to the Tigris database.
* @param vectors An array of vectors to be added to the Tigris database.
* @param documents An array of Document instances corresponding to the vectors.
* @param options Optional parameter that can either be an array of string IDs or an object with a property 'ids' that is an array of string IDs.
* @returns A Promise that resolves when the vectors have been added to the Tigris database.
*/
async addVectors(
vectors: number[][],
documents: Document[],
options?: { ids?: string[] } | string[]
) {
if (vectors.length === 0) {
return;
}
if (vectors.length !== documents.length) {
throw new Error(`Vectors and metadatas must have the same length`);
}
const ids = Array.isArray(options) ? options : options?.ids;
const documentIds = ids == null ? documents.map(() => uuid.v4()) : ids;
await this.index?.addDocumentsWithVectors({
ids: documentIds,
embeddings: vectors,
documents: documents.map(({ metadata, pageContent }) => ({
content: pageContent,
metadata,
})),
});
}
/**
* Method to perform a similarity search in the Tigris database and return
* the k most similar vectors along with their similarity scores.
* @param query The query vector.
* @param k The number of most similar vectors to return.
* @param filter Optional filter object to apply during the search.
* @returns A Promise that resolves to an array of tuples, each containing a Document and its similarity score.
*/
async similaritySearchVectorWithScore(
query: number[],
k: number,
filter?: object
) {
const result = await this.index?.similaritySearchVectorWithScore({
query,
k,
filter,
});
if (!result) {
return [];
}
// eslint-disable-next-line @typescript-eslint/no-explicit-any
return result.map(([document, score]: [any, any]) => [
new Document({
pageContent: document.content,
metadata: document.metadata,
}),
score,
]) as [Document, number][];
}
/**
* Static method to create a new instance of TigrisVectorStore from an
* array of texts.
* @param texts An array of texts to be converted into Document instances and added to the Tigris database.
* @param metadatas Either an array of metadata objects or a single metadata object to be associated with the texts.
* @param embeddings An instance of Embeddings to be used for embedding the texts.
* @param dbConfig An instance of TigrisLibArgs to be used for configuring the Tigris database.
* @returns A Promise that resolves to a new instance of TigrisVectorStore.
*/
static async fromTexts(
texts: string[],
metadatas: object[] | object,
embeddings: EmbeddingsInterface,
dbConfig: TigrisLibArgs
): Promise<TigrisVectorStore> {
const docs: Document[] = [];
for (let i = 0; i < texts.length; i += 1) {
const metadata = Array.isArray(metadatas) ? metadatas[i] : metadatas;
const newDoc = new Document({
pageContent: texts[i],
metadata,
});
docs.push(newDoc);
}
return TigrisVectorStore.fromDocuments(docs, embeddings, dbConfig);
}
/**
* Static method to create a new instance of TigrisVectorStore from an
* array of Document instances.
* @param docs An array of Document instances to be added to the Tigris database.
* @param embeddings An instance of Embeddings to be used for embedding the documents.
* @param dbConfig An instance of TigrisLibArgs to be used for configuring the Tigris database.
* @returns A Promise that resolves to a new instance of TigrisVectorStore.
*/
static async fromDocuments(
docs: Document[],
embeddings: EmbeddingsInterface,
dbConfig: TigrisLibArgs
): Promise<TigrisVectorStore> {
const instance = new this(embeddings, dbConfig);
await instance.addDocuments(docs);
return instance;
}
/**
* Static method to create a new instance of TigrisVectorStore from an
* existing index.
* @param embeddings An instance of Embeddings to be used for embedding the documents.
* @param dbConfig An instance of TigrisLibArgs to be used for configuring the Tigris database.
* @returns A Promise that resolves to a new instance of TigrisVectorStore.
*/
static async fromExistingIndex(
embeddings: EmbeddingsInterface,
dbConfig: TigrisLibArgs
): Promise<TigrisVectorStore> {
const instance = new this(embeddings, dbConfig);
return instance;
}
}