Skip to content

Latest commit

 

History

History
67 lines (50 loc) · 1.9 KB

INSTALL.md

File metadata and controls

67 lines (50 loc) · 1.9 KB

Installation

Requirements:

  • PyTorch 1.0 from a nightly release. Installation instructions can be found in https://pytorch.org/get-started/locally/
  • torchvision from master
  • cocoapi
  • yacs
  • matplotlib
  • GCC >= 4.9
  • (optional) OpenCV for the webcam demo

Option 1: Step-by-step installation

# first, make sure that your conda is setup properly with the right environment
# for that, check that `which conda`, `which pip` and `which python` points to the
# right path. From a clean conda env, this is what you need to do

conda create --name maskrcnn_benchmark
source activate maskrcnn_benchmark

# this installs the right pip and dependencies for the fresh python
conda install ipython

# maskrcnn_benchmark and coco api dependencies
pip install ninja yacs cython matplotlib

# follow PyTorch installation in https://pytorch.org/get-started/locally/
# we give the instructions for CUDA 9.0
conda install pytorch-nightly -c pytorch

# install torchvision
cd ~/github
git clone https://github.com/pytorch/vision.git
cd vision
python setup.py install

# install pycocotools
cd ~/github
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

# install PyTorch Detection
cd ~/github
git clone https://github.com/facebookresearch/maskrcnn-benchmark.git
cd maskrcnn-benchmark
# the following will install the lib with
# symbolic links, so that you can modify
# the files if you want and won't need to
# re-build it
python setup.py build develop

# or if you are on macOS
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py build develop

Option 2: Docker Image (Requires CUDA, Linux only)

Build image with defaults (CUDA=9.0, CUDNN=7):

nvidia-docker build -t maskrcnn-benchmark docker/

Build image with other CUDA and CUDNN versions:

nvidia-docker build -t maskrcnn-benchmark --build-arg CUDA=9.2 --build-arg CUDNN=7 docker/