-
Notifications
You must be signed in to change notification settings - Fork 0
/
faces_rec.py
62 lines (53 loc) · 2.44 KB
/
faces_rec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import face_recognition
import cv2
import numpy as np
import os
import csv
known_face_encodings=[]
known_face_names =[]
def load_encodings(directory):
for folder in os.listdir(directory):
with open(directory+"//"+folder+"//data.csv") as csvfile:
reader = csv.reader(csvfile, quoting=csv.QUOTE_NONNUMERIC) # change contents to floats
for row in reader: # each row is a list
known_face_names.append(folder)
known_face_encodings.append(row)
def faces_rec(file):
image = face_recognition.load_image_file(file)
face_locations = face_recognition.face_locations(image)
face_encodings = face_recognition.face_encodings(image, face_locations)
# Loop through each face in this frame of video
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
# Draw a box around the face
cv2.rectangle(image, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(image, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(image, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('found_faces', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
# face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
# best_match_index = np.argmin(face_distances)
# name="unknown"
# if matches[best_match_index]:
# name = known_face_names[best_match_index]
print(1)
load_encodings("detected_faces")
print(2)
faces_rec("unknown//2.jpg")
print(3)