Skip to content

Commit

Permalink
feat(linear_algebra): the direct sum of a submodule quotient is the q…
Browse files Browse the repository at this point in the history
…uotient of the direct sum (#17069)

This defines the linear equivalence `submodule.quotient_pi` which allows us to interchange taking the direct sum and taking the quotient. This result is useful for defining the ideal norm.

Co-Authored-By: Alex J. Best <alex.j.best@gmail.com>



Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>
Co-authored-by: Vierkantor <vierkantor@vierkantor.com>
  • Loading branch information
3 people committed Nov 12, 2022
1 parent 6ca1a09 commit 398f60f
Show file tree
Hide file tree
Showing 6 changed files with 174 additions and 1 deletion.
3 changes: 3 additions & 0 deletions src/algebra/module/equiv.lean
Expand Up @@ -264,6 +264,9 @@ rfl
include σ₃₁
@[simp] theorem trans_apply (c : M₁) :
(e₁₂.trans e₂₃ : M₁ ≃ₛₗ[σ₁₃] M₃) c = e₂₃ (e₁₂ c) := rfl

theorem coe_trans :
(e₁₂.trans e₂₃ : M₁ →ₛₗ[σ₁₃] M₃) = (e₂₃ : M₂ →ₛₗ[σ₂₃] M₃).comp (e₁₂ : M₁ →ₛₗ[σ₁₂] M₂) := rfl
omit σ₃₁

include σ'
Expand Down
6 changes: 5 additions & 1 deletion src/analysis/inner_product_space/two_dim.lean
Expand Up @@ -179,7 +179,11 @@ let to_dual : E ≃ₗ[ℝ] (E →ₗ[ℝ] ℝ) :=

@[simp] lemma inner_right_angle_rotation_aux₁_left (x y : E) :
⟪o.right_angle_rotation_aux₁ x, y⟫ = ω x y :=
by simp [right_angle_rotation_aux₁]
by simp only [right_angle_rotation_aux₁, linear_equiv.trans_symm, linear_equiv.coe_trans,
linear_equiv.coe_coe, inner_product_space.to_dual_symm_apply, eq_self_iff_true,
linear_map.coe_to_continuous_linear_map', linear_isometry_equiv.coe_to_linear_equiv,
linear_map.comp_apply, linear_equiv.symm_symm,
linear_isometry_equiv.to_linear_equiv_symm]

@[simp] lemma inner_right_angle_rotation_aux₁_right (x y : E) :
⟪x, o.right_angle_rotation_aux₁ y⟫ = - ω x y :=
Expand Down
11 changes: 11 additions & 0 deletions src/linear_algebra/basic.lean
Expand Up @@ -1982,7 +1982,18 @@ lemma comap_equiv_eq_map_symm (e : M ≃ₛₗ[τ₁₂] M₂) (K : submodule R
K.comap (e : M →ₛₗ[τ₁₂] M₂) = K.map (e.symm : M₂ →ₛₗ[τ₂₁] M) :=
(map_equiv_eq_comap_symm e.symm K).symm

variables {p}
include τ₂₁
lemma map_symm_eq_iff (e : M ≃ₛₗ[τ₁₂] M₂) {K : submodule R₂ M₂} :
K.map e.symm = p ↔ p.map e = K :=
begin
split; rintro rfl,
{ calc map e (map e.symm K) = comap e.symm (map e.symm K) : map_equiv_eq_comap_symm _ _
... = K : comap_map_eq_of_injective e.symm.injective _ },
{ calc map e.symm (map e p) = comap e (map e p) : (comap_equiv_eq_map_symm _ _).symm
... = p : comap_map_eq_of_injective e.injective _ },
end

lemma order_iso_map_comap_apply' (e : M ≃ₛₗ[τ₁₂] M₂) (p : submodule R M) :
order_iso_map_comap e p = comap e.symm p :=
p.map_equiv_eq_comap_symm _
Expand Down
16 changes: 16 additions & 0 deletions src/linear_algebra/pi.lean
Expand Up @@ -120,6 +120,11 @@ families of functions on these modules. See note [bundled maps over different ri
rw finset.univ_sum_single
end }

@[simp] lemma lsum_single {ι R : Type*} [fintype ι] [decidable_eq ι] [comm_ring R]
{M : ι → Type*} [∀ i, add_comm_group (M i)] [∀ i, module R (M i)] :
linear_map.lsum R M R linear_map.single = linear_map.id :=
linear_map.ext (λ x, by simp [finset.univ_sum_single])

variables {R φ}

section ext
Expand Down Expand Up @@ -248,6 +253,17 @@ begin
exact sum_mem_supr (λ i, mem_map_of_mem (hx i trivial)) }
end

lemma le_comap_single_pi [decidable_eq ι] (p : Π i, submodule R (φ i)) {i} :
p i ≤ submodule.comap (linear_map.single i : φ i →ₗ[R] _) (submodule.pi set.univ p) :=
begin
intros x hx,
rw [submodule.mem_comap, submodule.mem_pi],
rintros j -,
by_cases h : j = i,
{ rwa [h, linear_map.coe_single, pi.single_eq_same] },
{ rw [linear_map.coe_single, pi.single_eq_of_ne h], exact (p j).zero_mem }
end

end submodule

namespace linear_equiv
Expand Down
42 changes: 42 additions & 0 deletions src/linear_algebra/quotient.lean
Expand Up @@ -385,6 +385,43 @@ begin
exact inf_le_right,
end

/-- If `P` is a submodule of `M` and `Q` a submodule of `N`,
and `f : M ≃ₗ N` maps `P` to `Q`, then `M ⧸ P` is equivalent to `N ⧸ Q`. -/
@[simps] def quotient.equiv {N : Type*} [add_comm_group N] [module R N]
(P : submodule R M) (Q : submodule R N)
(f : M ≃ₗ[R] N) (hf : P.map f = Q) : (M ⧸ P) ≃ₗ[R] N ⧸ Q :=
{ to_fun := P.mapq Q (f : M →ₗ[R] N) (λ x hx, hf ▸ submodule.mem_map_of_mem hx),
inv_fun := Q.mapq P (f.symm : N →ₗ[R] M) (λ x hx, begin
rw [← hf, submodule.mem_map] at hx,
obtain ⟨y, hy, rfl⟩ := hx,
simpa
end),
left_inv := λ x, quotient.induction_on' x (by simp),
right_inv := λ x, quotient.induction_on' x (by simp),
.. P.mapq Q (f : M →ₗ[R] N) (λ x hx, hf ▸ submodule.mem_map_of_mem hx) }

@[simp] lemma quotient.equiv_symm {R M N : Type*} [comm_ring R]
[add_comm_group M] [module R M] [add_comm_group N] [module R N]
(P : submodule R M) (Q : submodule R N)
(f : M ≃ₗ[R] N) (hf : P.map f = Q) :
(quotient.equiv P Q f hf).symm =
quotient.equiv Q P f.symm ((submodule.map_symm_eq_iff f).mpr hf) :=
rfl

@[simp] lemma quotient.equiv_trans {N O : Type*} [add_comm_group N] [module R N]
[add_comm_group O] [module R O]
(P : submodule R M) (Q : submodule R N) (S : submodule R O)
(e : M ≃ₗ[R] N) (f : N ≃ₗ[R] O)
(he : P.map e = Q) (hf : Q.map f = S) (hef : P.map (e.trans f) = S) :
quotient.equiv P S (e.trans f) hef = (quotient.equiv P Q e he).trans (quotient.equiv Q S f hf) :=
begin
ext,
-- `simp` can deal with `hef` depending on `e` and `f`
simp only [quotient.equiv_apply, linear_equiv.trans_apply, linear_equiv.coe_trans],
-- `rw` can deal with `mapq_comp` needing extra hypotheses coming from the RHS
rw [mapq_comp, linear_map.comp_apply]
end

end submodule

open submodule
Expand Down Expand Up @@ -452,6 +489,11 @@ lemma quot_equiv_of_eq_mk (h : p = p') (x : M) :
submodule.quot_equiv_of_eq p p' h (submodule.quotient.mk x) = submodule.quotient.mk x :=
rfl

@[simp] lemma quotient.equiv_refl (P : submodule R M) (Q : submodule R M)
(hf : P.map (linear_equiv.refl R M : M →ₗ[R] M) = Q) :
quotient.equiv P Q (linear_equiv.refl R M) hf = quot_equiv_of_eq _ _ (by simpa using hf) :=
rfl

end submodule

end ring
Expand Down
97 changes: 97 additions & 0 deletions src/linear_algebra/quotient_pi.lean
@@ -0,0 +1,97 @@
/-
Copyright (c) 2022 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen, Alex J. Best
-/
import linear_algebra.pi
import linear_algebra.quotient

/-!
# Submodule quotients and direct sums
This file contains some results on the quotient of a module by a direct sum of submodules,
and the direct sum of quotients of modules by submodules.
# Main definitions
* `submodule.pi_quotient_lift`: create a map out of the direct sum of quotients
* `submodule.quotient_pi_lift`: create a map out of the quotient of a direct sum
* `submodule.quotient_pi`: the quotient of a direct sum is the direct sum of quotients.
-/

namespace submodule

open linear_map

variables {ι R : Type*} [comm_ring R]
variables {Ms : ι → Type*} [∀ i, add_comm_group (Ms i)] [∀ i, module R (Ms i)]
variables {N : Type*} [add_comm_group N] [module R N]
variables {Ns : ι → Type*} [∀ i, add_comm_group (Ns i)] [∀ i, module R (Ns i)]

/-- Lift a family of maps to the direct sum of quotients. -/
def pi_quotient_lift [fintype ι] [decidable_eq ι]
(p : ∀ i, submodule R (Ms i)) (q : submodule R N)
(f : Π i, Ms i →ₗ[R] N) (hf : ∀ i, p i ≤ q.comap (f i)) :
(Π i, (Ms i ⧸ p i)) →ₗ[R] (N ⧸ q) :=
lsum R (λ i, (Ms i ⧸ (p i))) R (λ i, (p i).mapq q (f i) (hf i))

@[simp] lemma pi_quotient_lift_mk [fintype ι] [decidable_eq ι]
(p : ∀ i, submodule R (Ms i)) (q : submodule R N)
(f : Π i, Ms i →ₗ[R] N) (hf : ∀ i, p i ≤ q.comap (f i)) (x : Π i, Ms i) :
pi_quotient_lift p q f hf (λ i, quotient.mk (x i)) =
quotient.mk (lsum _ _ R f x) :=
by rw [pi_quotient_lift, lsum_apply, sum_apply, ← mkq_apply, lsum_apply, sum_apply, _root_.map_sum];
simp only [coe_proj, mapq_apply, mkq_apply, comp_apply]

@[simp] lemma pi_quotient_lift_single [fintype ι] [decidable_eq ι]
(p : ∀ i, submodule R (Ms i)) (q : submodule R N)
(f : Π i, Ms i →ₗ[R] N) (hf : ∀ i, p i ≤ q.comap (f i)) (i) (x : Ms i ⧸ p i) :
pi_quotient_lift p q f hf (pi.single i x) =
mapq _ _ (f i) (hf i) x :=
begin
simp_rw [pi_quotient_lift, lsum_apply, sum_apply,
comp_apply, proj_apply],
rw finset.sum_eq_single i,
{ rw pi.single_eq_same },
{ rintros j - hj, rw [pi.single_eq_of_ne hj, _root_.map_zero] },
{ intros, have := finset.mem_univ i, contradiction },
end

/-- Lift a family of maps to a quotient of direct sums. -/
def quotient_pi_lift
(p : ∀ i, submodule R (Ms i))
(f : Π i, Ms i →ₗ[R] Ns i) (hf : ∀ i, p i ≤ ker (f i)) :
((Π i, Ms i) ⧸ pi set.univ p) →ₗ[R] Π i, Ns i :=
(pi set.univ p).liftq (linear_map.pi (λ i, (f i).comp (proj i))) $
λ x hx, mem_ker.mpr $
by { ext i, simpa using hf i (mem_pi.mp hx i (set.mem_univ i)) }

@[simp] lemma quotient_pi_lift_mk
(p : ∀ i, submodule R (Ms i))
(f : Π i, Ms i →ₗ[R] Ns i) (hf : ∀ i, p i ≤ ker (f i)) (x : Π i, Ms i) :
quotient_pi_lift p f hf (quotient.mk x) = λ i, f i (x i) :=
rfl

/-- The quotient of a direct sum is the direct sum of quotients. -/
@[simps] def quotient_pi [fintype ι] [decidable_eq ι]
(p : ∀ i, submodule R (Ms i)) :
((Π i, Ms i) ⧸ pi set.univ p) ≃ₗ[R] Π i, Ms i ⧸ p i :=
{ to_fun := quotient_pi_lift p (λ i, (p i).mkq) (λ i, by simp),
inv_fun := pi_quotient_lift p (pi set.univ p)
single (λ i, le_comap_single_pi p),
left_inv := λ x, quotient.induction_on' x (λ x',
by simp_rw [quotient.mk'_eq_mk, quotient_pi_lift_mk, mkq_apply,
pi_quotient_lift_mk, lsum_single, id_apply]),
right_inv := begin
rw [function.right_inverse_iff_comp, ← coe_comp, ← @id_coe R],
refine congr_arg _ (pi_ext (λ i x, quotient.induction_on' x (λ x', funext $ λ j, _))),
rw [comp_apply, pi_quotient_lift_single, quotient.mk'_eq_mk, mapq_apply,
quotient_pi_lift_mk, id_apply],
by_cases hij : i = j; simp only [mkq_apply, coe_single],
{ subst hij, simp only [pi.single_eq_same] },
{ simp only [pi.single_eq_of_ne (ne.symm hij), quotient.mk_zero] },
end,
.. quotient_pi_lift p (λ i, (p i).mkq) (λ i, by simp) }

end submodule

0 comments on commit 398f60f

Please sign in to comment.