Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

Commit

Permalink
feat(topology/algebra/infinite_sum): add has_sum.smul_const etc (#1…
Browse files Browse the repository at this point in the history
…0393)

Rename old `*.smul` to `*.const_smul`.
  • Loading branch information
urkud committed Nov 20, 2021
1 parent 618447f commit b3538bf
Show file tree
Hide file tree
Showing 2 changed files with 26 additions and 8 deletions.
2 changes: 1 addition & 1 deletion src/measure_theory/measure/vector_measure.lean
Original file line number Diff line number Diff line change
Expand Up @@ -335,7 +335,7 @@ def smul (r : R) (v : vector_measure α M) : vector_measure α M :=
{ measure_of' := r • v,
empty' := by rw [pi.smul_apply, empty, smul_zero],
not_measurable' := λ _ hi, by rw [pi.smul_apply, v.not_measurable hi, smul_zero],
m_Union' := λ _ hf₁ hf₂, has_sum.smul (v.m_Union hf₁ hf₂) }
m_Union' := λ _ hf₁ hf₂, has_sum.const_smul (v.m_Union hf₁ hf₂) }

instance : has_scalar R (vector_measure α M) := ⟨smul⟩

Expand Down
32 changes: 25 additions & 7 deletions src/topology/algebra/infinite_sum.lean
Original file line number Diff line number Diff line change
Expand Up @@ -759,23 +759,41 @@ end tsum

end topological_ring

section has_continuous_smul
section const_smul
variables {R : Type*}
[monoid R] [topological_space R]
[topological_space α] [add_comm_monoid α]
[distrib_mul_action R α] [has_continuous_smul R α]
{f : β → α}

lemma has_sum.smul {a : α} {r : R} (hf : has_sum f a) : has_sum (λ z, r • f z) (r • a) :=
lemma has_sum.const_smul {a : α} {r : R} (hf : has_sum f a) : has_sum (λ z, r • f z) (r • a) :=
hf.map (distrib_mul_action.to_add_monoid_hom α r) (continuous_const.smul continuous_id)

lemma summable.smul {r : R} (hf : summable f) : summable (λ z, r • f z) :=
hf.has_sum.smul.summable
lemma summable.const_smul {r : R} (hf : summable f) : summable (λ z, r • f z) :=
hf.has_sum.const_smul.summable

lemma tsum_smul [t2_space α] {r : R} (hf : summable f) : ∑' z, r • f z = r • ∑' z, f z :=
hf.has_sum.smul.tsum_eq
lemma tsum_const_smul [t2_space α] {r : R} (hf : summable f) : ∑' z, r • f z = r • ∑' z, f z :=
hf.has_sum.const_smul.tsum_eq

end has_continuous_smul
end const_smul

section smul_const
variables {R : Type*}
[semiring R] [topological_space R]
[topological_space α] [add_comm_monoid α]
[module R α] [has_continuous_smul R α]
{f : β → R}

lemma has_sum.smul_const {a : α} {r : R} (hf : has_sum f r) : has_sum (λ z, f z • a) (r • a) :=
hf.map ((smul_add_hom R α).flip a) (continuous_id.smul continuous_const)

lemma summable.smul_const {a : α} (hf : summable f) : summable (λ z, f z • a) :=
hf.has_sum.smul_const.summable

lemma tsum_smul_const [t2_space α] {a : α} (hf : summable f) : ∑' z, f z • a = (∑' z, f z) • a :=
hf.has_sum.smul_const.tsum_eq

end smul_const

section division_ring

Expand Down

0 comments on commit b3538bf

Please sign in to comment.