Skip to content

Commit

Permalink
feat(ring_theory): define fractional_ideal.adjoin_integral (#8296)
Browse files Browse the repository at this point in the history
This PR shows if `x` is integral over `R`, then `R[x]` is a fractional ideal, and proves some of the essential properties of this fractional ideal.

This is an important step towards showing `is_dedekind_domain_inv` implies that the ring is integrally closed.

Co-Authored-By: Ashvni ashvni.n@gmail.com
Co-Authored-By: Filippo A. E. Nuccio filippo.nuccio@univ-st-etienne.fr
  • Loading branch information
Vierkantor committed Jul 20, 2021
1 parent c05c15f commit fce38f1
Showing 1 changed file with 24 additions and 0 deletions.
24 changes: 24 additions & 0 deletions src/ring_theory/fractional_ideal.lean
Expand Up @@ -1115,6 +1115,30 @@ begin
apply is_noetherian_coe_to_fractional_ideal,
end

section adjoin

include loc
omit frac

variables {R P} (S) (x : P) (hx : is_integral R x)

/-- `A[x]` is a fractional ideal for every integral `x`. -/
lemma is_fractional_adjoin_integral :
is_fractional S (algebra.adjoin R ({x} : set P)).to_submodule :=
is_fractional_of_fg (fg_adjoin_singleton_of_integral x hx)

/-- `fractional_ideal.adjoin_integral (S : submonoid R) x hx` is `R[x]` as a fractional ideal,
where `hx` is a proof that `x : P` is integral over `R`. -/
@[simps]
def adjoin_integral : fractional_ideal S P :=
⟨_, is_fractional_adjoin_integral S x hx⟩

lemma mem_adjoin_integral_self :
x ∈ adjoin_integral S x hx :=
algebra.subset_adjoin (set.mem_singleton x)

end adjoin

end fractional_ideal

end ring

0 comments on commit fce38f1

Please sign in to comment.